目录
- 协同过滤
- 基于用户的协同过滤
- 背后的思想
- 原理
- 实践
- 1、构造矩阵
- 2、相似度计算
- 3、推荐计算
- 4、一些改进
- 应用场景:
- 总结
谈及推荐系统,不得不说大名鼎鼎的协同过滤。协同过滤的重点在于协同,所谓协同,也就是群体互帮互助,互相支持是群体智慧的体现,协同过滤也是这般简单直接,历久弥新。
协同过滤
当你的推荐系统过了只能使用基于内容的推荐阶段后,就有了可观的用户行为了。这时候的用户行为通常是正向的,也就是用户或明或暗地表达着喜欢的行为。这些行为可以表达成一个用户和物品的关系矩阵,或是网络,或是图,本质是一个东西。
这个用户物品关系矩阵中填充的就是用户对物品的态度,但并不是每个位置都有,需要的就是把那些还没有的地方填充起来。这个关系矩阵是协同过滤的关键,一切都围绕它来进行;
协同过滤是一个比较大的算法范畴。通常划分为两类;
1、基于记忆的协同过滤(Memory-Based)
2、基于模型的协同过滤(Model-Based)
基于记忆的协同过滤,就是记住每个人消费过什么东西,然后推荐相似的东西,或者推荐相似的人消费的东西。基于模型的协同过滤则是从用户物品关系矩阵中去学习一个模型,从而把那些矩阵空白处填满;
今天先讲一下基于基于的协同过滤的一种:基于用户,或者叫做User-Based;
基于用户的协同过滤
背后的思想
你有没有过这种感觉,你遇到一个人,你发现你喜欢的书,他也喜欢,你喜欢的音乐,他也在听,你喜欢看的电影,他也至少看了两三遍,你们这叫什么,志同道合。所以问题来了,他又看了一本书,又听了一首歌,你会不会正好也喜欢呢?
这个感觉非常的自然,这就是基于用户的协同过滤背后的思想。详细来说就是:先根据历史消费行为帮你找到一群和你口味相似的用户,然后根据这些和你很相似的用户消费了什么新的、你没见过的物品、都可以推荐给你。
这就是我们常说的物以类聚人以群分,你是什么人,你就会遇到什么人。
这其实也是一个用户聚类的过程,把用户按照兴趣口味聚类成不同的群体,给用户产生的推荐就来自这个群体的平均值;所以要做好这个推荐,关键是如何量化口味相似这个指标。
原理
我们来说一下基于用户的协同过滤具体是怎么做的,核心是那个用户物品的关系矩阵,这个矩阵是最原始的材料。
第一步,准备用户向量,从这个矩阵中,理论上可以给每一个用户得到一个向量 。为什么说要是理论上呢?因为得到向量的前提是:用户需要在我们产品里有行为数据,否则就得不到这个向量。
这个向量有这么三个特点:
1、向量的维度就是物品的个数;
2、向量是稀疏的,也就是说并不是每个位置都有值;
3、向量维度上的取值可以是简单的0或1,1表示喜欢过,0表示没有;
第二步,用每一个用户的向量,两两计算用户之间的相似度,设定一个相似度阈值,为每个用户保留与其最相似的用户。
第三步,为每一个用户产生推荐结果。
把和他相似的用户们喜欢过的物品汇总起来,去掉用户自己已经消费过的物品,剩下的排序输出就是推荐结果。
这个公式,等号左边就是计算一个物品i和一个用户u的匹配分数,等号右边是这个分数的计算过程,分母是把用户u相似的n个用户的相似度累加起来分子是把这n个用户各自对物品i的态度,按照相似度加权求和。这里的态度最简单就是0或1,1表示喜欢过,0表示没有,如果是评分,则可以是0到5的取值。整个公式就是相似用户们的态度加权平均值。
实践
原理看上去很简单,但是在实现上却有一些坑,需要非常小心;
1、只有原始的用户行为日志,需要从中构造矩阵,怎么做?
2、如果用户的向量很长,计算一个相似度则耗时很久,怎么办?
3、如果用户量很大,而且通常如此,而且两两计算用户相似度也是一个大坑,怎么办?
4、在计算推荐时,看上去要为每一个用户计算他和每一个物品的分数,又是一个大坑,怎么办?
1、构造矩阵
我们在做协同过滤计算时,所用的矩阵是稀疏的,也就是说很多矩阵元素不用存,都是0,这里介绍典型的稀疏矩阵存储格式。
1.CSR:这个存储稍微复杂点,是一个整体编码方式。它有三个组成:数值,列号和行偏移共同编码。COO
2.COO:这个存储方式很简单,每个元素由三元组表示(行号,列号,数值),只存储有值的元素,缺失值不存储。
这些存储格式,在常见的计算框架里面都是标准的,如Spark中,Python的Numpy包中。把你的原始行为日志转换为上述的格式,就可以使用常用的计算框架的标准输入了。
2、相似度计算
相似度计算是个问题。
首先是单个相似度计算问题,如果碰上向量很长,无论什么相似度计算方法,都要遍历向量。所以通常下降相似度计算复杂度的办法有两种。
1、对向量采样计算。如果两个100维向量的相似度是0.7,我们牺牲一些精度,随机从取出10维计算,以得到的值作为其相似度值,虽然精度下降,但执行效率明显快了很多。这个算法由Twitter提出,叫做DIMSUM算法,已经在spark中实现了。
2、向量化计算,与其说是一个技巧,不如说是一种思维。在机器学习领域,向量之间的计算时家常便饭,现代的线性代数库都支持直接的向量计算,比循环快很多。一些常用的向量库都天然支持,比如python中的numpy库。
其次的问题就是,如果用户量很大,两两之间计算代价很大。
有两个办法来缓解这个问题:
第一个办法是:将相似度拆成Map Reduce任务,将原始矩阵Map成键为用户对,值为两个用户对同一个物品的评分之积,Reduce阶段对这些乘积再求和,map reduce任务结束后再对这些值归一化;
第二个办法是:不用基于用户的协同过滤。
这种计算对象两两之间的相似度的任务,如果数据量不大,而且矩阵还是稀疏的,有很多工具可以使用:比如KGraph 、GraphCHI等;
3、推荐计算
得到用户之间的相似度之后,接下来就是计算推荐分数。显然未每一个用户计算每一个物品的推荐分数,这个代价有点大。不过,有几点我们可以来利用一下:
1.只有相似用户喜欢过的物品才需要计算,这样就减少很多物品量。
2、把计算过程拆成Map Reduce 任务。
拆Map Reduce任务的做法是:
1、遍历每个用户喜欢的用户列表;
2、获取该用户的相似用户列表;
3、把每一个喜欢的物品Map成两个记录发射出去,一个键为<相似用户ID,物品ID,1>三元组,值为<相似度>,另一个键为<相似用户ID,物品ID,0>三元组,值为<喜欢程度相似度>,其中1和0是为了区分两者,会在最后一步中用到。
4、Reduce阶段,求和后输出;
5、<相似用户ID,物品ID,0>的值除以<相似用户ID,物品ID,1>的值
因为map过程,其实就是将原来耦合的计算过程解耦了,这样的话我们可以利用多线程技术实现Map效果。
4、一些改进
对于基于用户的协同过滤有一些常用的改进办法,改进主要集中在用户对物品的喜欢程度上:
1.惩罚对热门物品的喜欢程度,这是因为热门的东西很难反应出用户的真实兴趣,更可能是被煽动,或者无聊随便点击的情形,这是群体行为的常见特点。
2.增加喜欢程度的时间衰减,一般使用一个指数函数,指数是一个负数,值和喜欢行为发生时间间隔正相关即可,比如 e ( − x ) e^{(-x)} e(−x),x代表喜欢时间距今的时间间隔。
应用场景:
最后说一下基于用户的协同过滤有哪些应用场景。基于用户的协同过滤有两个产出:
1、相似用户列表
2、基于用户的推荐结果
所以,我们不仅可以推荐物品,还可以推荐用户,比如我们在一些社交平台看到的,相似粉丝、和你口味类似的人等等都可以这样计算。
对于这个方法计算出来的推荐结果本身,由于是基于口味计算得出,所以在更强调个人隐私场景中应用更佳,在这样的场景下,不受大v影响,更能反应真实的兴趣群体。
总结
今天,我与你聊了基于用户的协同过滤方法,也顺便普及了一下协同过滤这个大框架的思想。基于用户的协同过滤算法非常简单,但非常有效。
在实现这个方法时,有许多需要注意的地方,比如:
1、相似度计算本身如果遇到超大维度向量怎么办?
2、两两计算用户相似度遇到用户量很大时怎么办?
同时,我也聊到了如何改进这个推荐算法,希望能够帮到你。