【Text2SQL 论文】C3:使用 ChatGPT 实现 zero-shot Text2SQL

论文:C3: Zero-shot Text-to-SQL with ChatGPT

⭐⭐⭐⭐

arXiv:2307.07306,浙大

Code:C3SQL | GitHub

一、论文速读

使用 ChatGPT 来解决 Text2SQL 任务时,few-shots ICL 的 setting 需要输入大量的 tokens,这有点昂贵且可能实际不可行。因此,本文尝试在 zero-shot 的 setting 下来解决 Text2SQL 问题。

本文提出了 C3 来基于 ChatGPT zero-shot 去做 Text2SQL,实现了 1000 tokens per query 下优于 fine-tuning-based methods。

二、C3

C3 由三个关键组件构成:Clear Prompts(CP)、Calibration with Hints(CH)、Consistency Output(CO),分别对应着模型输入、模型偏差和模型输出。

2.1 Clear Prompts 组件

Clear PromptsCP)组件的目标是为 ChatGPT 解决 Text2SQL 任务构建一个有效的 prompt。它由两部分组成:Clear Layout 和 Clear Context。

2.1.1 Clear Layout

在 Text2SQL 中,有两种 prompt layout 的 styles:

  • 类型 1:Complicated Layout:这种类型的 prompt 直接将 instruction、question 和 context 拼接起来,看起来较为杂乱,如下图的 (a) 所示
  • 类型 2:Clear Layout:这种类型的 prompt 使用一个明显的分隔符将 instruction、question 和 context 分开,看起来更加清晰,如下图的 (b) 所示

在这里插入图片描述

论文指出,从直觉和实验上,都证明了 clear layout 能产生更好的表现。因此本文主要使用改进后的 clear layout。

但是,论文发现直接使用上图的 (b) 作为 prompt 会在生成的 SQL 中产生冗余的 columns,为了解决这个问题,论文在 instruction 部分后面加了一句:and do not select extra columns that are not explicitly requested in the query

2.1.2 Clear Context

论文指出,在 prompt context 中包含整个 db schema 会导致两个问题:

  1. 在 prompt 引入过多的不相关 schema items 会让 ChatGPT 生成 SQL 时增加不相关 items 的 likelihood。
  2. 使用完整的 db schema 会让文本长度过大,导致不必要的 API tokens 开销

为此,论文提出需要先进行 schema linking 以召回相关的 tables 和 columns,并只将相关的信息放入 prompt context 中。

本文提出了一个 ChatGPT-based zero-shot 的 schema linking 的方法,分成两步:

  • Table Recall:使用一个 prompt 让 ChatGPT 召回相关 tables
  • Column Recall:基于 table recall 的结果,使用 prompt 让 ChatGPT 进一步召回相关 columns

Table Recall 的 prompt 示例如下:

在这里插入图片描述

Column Recall 的 prompt 示例如下:

在这里插入图片描述

2.2 Calibration with Hints 组件

论文通过分析生成的 SQL query,发现了几个由于 ChatGPT 固有的 biases 造成的 errors:

  • Bias 1:ChatGPT 在 output 中倾向于保守,SELECT 语句中经常出现与问题相关但不是必需的列。而且在涉及到数量问题时尤为明显。比如下图的左边第一个问题,COUNT(*) 仅用于排序,但 ChatGPT 在 SELECT 中也将其输出了。
  • Bias 2:ChatGPT 编写 SQL 时倾向于使用 LEFT JOIN、OR、IN,但经常无法正确使用它们。这种 bias 通常会导致执行结果中出现额外的值。

在这里插入图片描述

为了校准这些 bias,论文使用一个单独的组件来实施校准策略:Calibration with HintsCH)。

论文通过将用于修正 Bias 的先验知识注入到与 ChatGPt 的历史对话中。在对话 history 中,我们让 ChatGPT 认为自己是一个优秀的 SQL 编写器,并引导它去遵循我们提出的 debias hints:

  • Hint 1:针对第一个 bias,这里设计了一个 tip 去指导 ChatGPT 只选择必要的 columns
  • Hint 2:针对第二个 bias,这里设计了一个 tip 来防止 ChatGPT 滥用一些 SQL 关键字。如下图所示,prompt 中直接要求 ChatGPT 尽量避免使用 LEFT JOIN、IN、OR,而使用 JOIN 和 INSERSECT,而且在适当时使用 DISTINCT 或 LIMIT,来避免重复的执行结果。

如下是一个示例:

在这里插入图片描述

2.3 Consistency Output 组件

由于 LLM 固有的随机性,ChatGPT 的输出是不稳定的。这里将 Text2SQL 也视为 reasoning 问题,于是使用 self-consistency 思想来提高效果。

论文提出了一个 execution-based self-consistency for Text2SQL 方法,封装为这里的 Consistency OutputCO)组件,用于选择 LLM 生成的 SQL。

这里的思想是,让 LLM 通过多个推理路径来生成多个 SQL answers,然后移除掉其中 execution error 的 SQL,并对剩余的 SQL 进行投票,从而选出最终的答案

2.4 总结

C3 的整体框架如下:

在这里插入图片描述

三、实验

论文在 Spider 数据集上使用 Execution Accuracy(EX)作为指标来测试。

整体上的实验发现,C3 在 Spider 测试集上优于所有传统的基于微调的方法,在 Spider 排行榜上排名第二。与 top-1 方法的 few-shots settings 的 DIN-SQL 相比,只使用了约 10% 的 token 数量,而且这里使用的 GPT-3.5 在成本上也低于 DIN-SQL 使用的 GPT-4。所以,C3 方法更加预算友好

此外,论文还做了不少的消融实验,总结了 error cases 的分析,具体可参考原论文。

四、总结

本文提出的 C3 基于 ChatGPT 实现了 zero-shot Text2SQL,并取得了 zero-shot 的最好性能。

C3 从模型输入、模型偏差和模型输出三个角度为基于 GPT 的 Text2SQL 提供了系统的处理方法。这些方法值得后面的研究来参考。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/343429.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

玩转微服务-GateWay

目录 一. 背景二. API网关1. 概念2. API网关定义3. API网关的四大职能4. API网关分类5. 开源API网关介绍6. 开源网关的选择 三. Spring Cloud Gateway1. 文档地址2. 三个核心概念3. 工作流程4. 运行原理4.1 路由原理4.2 RouteLocator 5. Predicate 断言6. 过滤器 Filter6.1. 过…

Docker的网络管理

文章目录 一、Docker容器之间的通信1、直接互联(默认Bridge网络)1.1、Docker安装后默认的网络配置1.2、创建容器后的网络配置1.2.1、首先创建一个容器1.2.2、ip a 列出网卡变化信息1.2.3、查看新建容器后的桥接状态 1.3、容器内安装常见的工具1.4、容器间…

Spring Cloud系列——使用Sentinel进行微服务保护

文章目录 一、引言1. 雪崩问题的产生原因2. 解决雪崩问题的思路 二、微服务保护1. 服务保护方案1.1 请求限流1.2 线程隔离1.3 服务熔断 2. Sentinel2.1 安装2.2 微服务整合2.2.1 请求限流2.2.2 线程隔离①OpenFeign整合Sentinel②配置线程隔离 2.2.3 服务熔断①编写降级逻辑②配…

路由器重启真的好吗?多久重启一次更好?

前言 小白前段时间发现自己家的OpenWRT软路由上网特别慢,有时候通话还有点卡顿。 然而有个朋友用的普通路由器也有类似的问题,而且有时候根本上不去网。 解决的办法很简单:重启路由器。 重启路由器? 但路由器重启是真的好吗&a…

Android无障碍服务

Hi I’m Shendi Android无障碍服务 最近想制作一个记录点击操作并重复播放的工具,用以解放双手,因现在的Android高版本基本上难以Root,所以选择了使用无障碍来实现,在这里记录下来。 Android无障碍 可参考文档:https:…

Linux网络编程:网络层协议|IP

目录 前言: 1.IP协议 1.1.IP协议格式 1.2.网段划分 1.2.1.知识引入 1.2.2.IP地址划分和子网掩码 1.3.IP地址分类 1.3.1.特殊IP地址 ​编辑 1.3.2.私有IP和公网IP 1.3.3.浅谈NAT技术 1.4.路由 1.4.1.什么是路由 1.4.2.路由表 1.5.网络层数据切片和组装…

升级最新版openssh-9.7p1及openssl-1.1.1h详细步骤及常见问题总结

近期因为openssh相继被漏洞扫描工具扫出存在漏洞,所以考虑升级操作系统中的openssh和openssl为最新版本,来避免漏洞风险。期间的升级过程及遇到的疑难问题,特此记录下来,供有需要的人参考。 本次目标是升级 openssh 为 9.7p1 版本…

千问Qwen7B chat:本地部署及网页端使用

基于前面的安装经验,千问大模型的本地部署并不算难,主要时间用在大模型文件的下载上。同时系统运行对硬件也有较高的要求,本机的硬件配置为N卡3060,显存12G。 使用conda创建虚拟环境,主要版本如下: Pyth…

上BFT,是你的首选

上BFT,是你的首选 如果你想要找最智能的机器人,想要找品牌最全或者想要咨询专业的解决方案,一定不要错过BFT机器人采购站。BFT致力于为广大用户提供品质卓越、技术先进的机器人产品。 BFT里面机器人多种多样,不管您是想要工业机器…

LeetCode25_K个一组翻转链表

. - 力扣(LeetCode) 一、题目描述 二、过程模拟 1. 第一步 2. 第二步:子链表分组 3. 第三步:断开前后两组 4. 第四步:翻转start到end的部分 5. 第五步:连接翻转好的前半部分和未翻转的后半部分&#xff…

dots_image 增强图像中的圆点特征

dots_image 增强图像中的圆点特征 1. dot_image 有什么用途?2. 点状字符的特征增强3. Halcon代码 1. dot_image 有什么用途? Enhance circular dots in an image. 这个算子可以增强图像中的圆点特征,例如下面的例子。 2. 点状字符的特征增强…

【kubernetes】探索k8s集群的配置资源(secret和configma)

目录 一、Secret 1.1Secret 有四种类型 1.2Pod 有 3 种方式来使用 secret 1.3应用场景:凭据 1.4创建 Secret 1.4.1用kubectl create secret命令创建Secret 1.4.2内容用 base64 编码,创建Secret 1.4.2.1Base64编码 1.4.2.2创建YAML文件 1.4.2.3…

A6500-LC LVDT 前置器,用于A6500-UM, 导轨安装

电源 22.5V to 32VDC <30mA <0.1%/V <60V( 使用SELV/PELV 供电电源) 约2.2Vrms,5kHz IP20 IEC 60529 -35C to 75C(-31F to 167F) -35C to 85C(-31F to 185F) 电流损耗 供电电压对 运行温度 存储温度 0.35mm(0.014 in ),10 to 55Hz 15g 根据 EN 60068-2-27 根据IEC 613…

利用keepalived对zabbix-server做高可用,部署安装keepalived

有2台机器&#xff0c;每台都有1个zabbix-server&#xff0c;然后再每台上再装一个keepalived https://www.keepalived.org/download.html 1&#xff0c;创建安装路径 mkdir /usr/share/keepalived/2&#xff0c;在这个安装路径下面下载keepalived的软件包 我选的版本是1.3…

【Linux】Linux环境基础开发工具_5

文章目录 四、Linux环境基础开发工具Linux小程序---进度条git 未完待续 四、Linux环境基础开发工具 Linux小程序—进度条 上篇我们实现了一个简易的进度条&#xff0c;不过那仅仅是测试&#xff0c;接下来我们真正的正式实现一个进度条。 接着编写 processbar.c 文件 然…

OpenAI发布GPT-4思维破解新策略,Ilya亦有贡献!

OpenAI正在研究如何破解GPT-4的思维&#xff0c;并公开了超级对齐团队的工作&#xff0c;Ilya Sutskever也在作者名单中。 论文地址&#xff1a;https://cdn.openai.com/papers/sparse-autoencoders.pdf 代码&#xff1a;https://github.com/openai/sparse_autoencoder 特征可…

Windows 搭建C++ 纯开源开发环境 进行 YOLOv8 模型推理的开发测试环境

文章大纲 IDE 选择纯开源首选 Codeblocks 跨平台开发IDE其次选择 visual studio 社区版 or visual studio code包管理MSYS2pacmanconda & mambavcpkgNuGetapt-get其他手动配置 Visual studio 开发环境下载 visual studio基本配置基本测试:打开图片,打开摄像头读取图片读取…

【红黑树变色+旋转】

文章目录 一. 红黑树规则二. 情况一叔叔存在且为红情况二.变色旋旋 一. 红黑树规则 对于红黑树&#xff0c;进行变色旋转处理&#xff0c;终究都是为了维持颜色以下几条规则&#xff0c;只有颜色和规则维持住了&#xff0c;红黑树就维持住了最长路径的长度不超过最短路径的两倍…

IngsollRang伺服拧紧轴控制器维修故障排查

【IngsollRang控制器故障排查】 在开始维修之前&#xff0c;请确保拧紧机已关闭并断开电源。然后&#xff0c;按照以下步骤进行故障排查&#xff1a; 1. 检查电源连接&#xff1a;确保拧紧机的电源线牢固连接&#xff0c;且电源插座正常工作。 2. 检查保险丝&#xff1a;如果电…

Netty中的ByteBuf使用介绍

ByteBuf有三类&#xff1a; 堆缓存区&#xff1a;JVM堆内存分配直接缓冲区&#xff1a;有计算机内存分配&#xff0c;JVM只是保留分配内存的地址信息&#xff0c;相对于堆内存方式较为昂贵&#xff1b;复合缓冲区&#xff1a;复合缓冲区CompositeByteBuf&#xff0c;它为多个B…