【猫狗识别系统】图像识别Python+TensorFlow+卷积神经网络算法+人工智能深度学习

猫狗识别系统。通过TensorFlow搭建MobileNetV2轻量级卷积神经算法网络模型,通过对猫狗的图片数据集进行训练,得到一个进度较高的H5格式的模型文件。然后使用Django框架搭建了一个Web网页端可视化操作界面。实现用户上传一张图片识别其名称。

一、前言

本研究中,我们开发了一个基于深度学习的猫狗识别系统,使用了TensorFlow框架下的MobileNetV2轻量级卷积神经网络模型。MobileNetV2模型以其高效的结构和较低的计算成本而闻名,非常适合在移动和嵌入式设备上使用。通过对数千张标记好的猫狗图片进行训练,最终生成了一个准确率较高的模型文件(H5格式),可以有效地区分猫和狗的图像。
此外,为了提高用户体验和系统的实用性,我们使用Django框架搭建了一个简洁的Web应用界面。该界面允许用户上传图片,并即时显示模型的识别结果。Django框架的选择是因为其稳定性以及对动态网页应用的良好支持。用户界面设计简洁直观,用户可通过几个简单步骤上传图片并获取识别结果,整个过程无需用户具备深度学习或编程的背景知识。
系统的核心功能是图像识别,我们实现了一个后端处理流程,包括图片的预处理、模型加载和结果输出。图片预处理保证输入模型的图像符合MobileNetV2的输入要求,如大小调整和归一化。一旦上传的图片被处理和输入模型,模型会输出其预测结果,随后结果将被反馈至前端显示。
总的来说,本系统提供了一个高效、用户友好的平台,用于区分猫和狗的图像。该系统的开发展示了深度学习技术在实际应用中的潜力,尤其是在动物识别和其他图像分类任务中。未来的工作将包括进一步优化模型的准确率和处理速度,以及扩展系统的功能,如增加更多类型的动物识别等。

二、系统效果图片展示

img_06_03_21_45_15

img_06_03_21_45_35

img_06_03_21_45_51

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/lbefvlirb7om53fm

四、MobileNetV2介绍

MobileNetV2是一种流行的轻量级深度神经网络架构,主要设计目的是优化运行效率,使其能够在资源受限的设备上运行,如智能手机和其他移动设备。这一模型由Google的研究者在2018年开发,是MobileNet架构的改进版本。
MobileNetV2的核心特点是使用了倒置残差结构(inverted residuals)和线性瓶颈(linear bottlenecks)。在这种结构中,输入和输出通过薄瓶颈层连接,而内部则扩展到有较多通道的层,这有助于信息在网络中的传递并减少信息损失。此外,MobileNetV2引入了可调节的深度可分离卷积(depthwise separable convolution),这种卷积可以显著减少模型的参数数量和计算成本,同时几乎不牺牲性能。
MobileNetV2的另一个特点是它在多个标准数据集上显示出了良好的性能,同时保持了较低的延迟和小的模型大小,这使其非常适合在实时应用中使用。
下面是一个简单的MobileNetV2模型实现案例,用于加载预训练的MobileNetV2模型并对输入的图片进行分类:


import numpy as np
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, decode_predictions# 加载预训练的MobileNetV2模型
model = MobileNetV2(weights='imagenet')# 加载并预处理图片
img_path = 'path_to_your_image.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)# 使用模型进行预测
preds = model.predict(x)# 输出预测结果
print('Predicted:', decode_predictions(preds, top=3)[0])

这段代码首先加载了一个预训终的MobileNetV2模型,然后加载一张图片并进行适当的预处理,最后使用模型对这张图片进行分类,并打印出最可能的三个预测结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/343468.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

外部mysql导入

利用这个命令&#xff1a; mysql -u username -p database_name < file.sql 然后就这样。成功导入。

【全开源】废品回收垃圾回收小程序APP公众号源码PHP版本

&#x1f31f;废品回收小程序&#xff1a;绿色生活的新助手&#x1f331; 一、引言 随着环保意识的逐渐提高&#xff0c;废品回收成为了我们日常生活中的重要一环。但是&#xff0c;如何更方便、高效地进行废品回收呢&#xff1f;今天&#xff0c;我要向大家推荐一款超级实用…

22 - 游戏玩法分析 IV(高频 SQL 50 题基础版)

22 - 游戏玩法分析 IV 考点&#xff1a; 聚合函数 # 日期相加 date_add(min(event_date),INTERVAL 1 DAY) select round(count(distinct player_id)/(select count(distinct player_id) from Activity),2) fraction fromActivity where-- 如果日期加一天的数据能在表中…

ffmpeg视频编码原理和实战-(2)视频帧的创建和编码packet压缩

源文件&#xff1a; #include <iostream> using namespace std; extern "C" { //指定函数是c语言函数&#xff0c;函数名不包含重载标注 //引用ffmpeg头文件 #include <libavcodec/avcodec.h> } //预处理指令导入库 #pragma comment(lib,"avcodec.…

覆盖路径规划经典算法 The Boustrophedon Cellular Decomposition 详解

2000年一篇论文 Coverage of Known Spaces: The Boustrophedon Cellular Decomposition 横空出世&#xff0c;解决了很多计算机和机器人领域的覆盖路径问题&#xff0c;今天我来详细解读这个算法。 The Boustrophedon Cellular Decomposition 算法详解 这篇论文标题为"C…

Ubuntu系统本地搭建WordPress网站并发布公网实现远程访问

文章目录 前言1. 搭建网站&#xff1a;安装WordPress2. 搭建网站&#xff1a;创建WordPress数据库3. 搭建网站&#xff1a;安装相对URL插件4. 搭建网站&#xff1a;内网穿透发布网站4.1 命令行方式&#xff1a;4.2. 配置wordpress公网地址 5. 固定WordPress公网地址5.1. 固定地…

UE5 Mod Support 思路——纯蓝图

原创作者&#xff1a;Chatouille 核心功能 “Get Blueprint Assets”节点&#xff0c;用于加载未来的mod。用基础类BP_Base扩展即可。打包成补丁&#xff0c;放到Content\Paks目录下&#xff0c;即可让游戏访问到内容。 与文中所写不同的地方 5.1或者5.2开始&#xff0c;打…

【YOLOv10】使用 TensorRT C++ API 调用GPU加速部署 YOLOv10 实现 500FPS 推理速度——快到飞起!

NVIDIA TensorRT ™ 是一款用于高性能深度学习推理的 SDK&#xff0c;包含深度学习推理优化器和运行时&#xff0c;可为推理应用程序提供低延迟和高吞吐量。YOLOv10是清华大学研究人员近期提出的一种实时目标检测方法&#xff0c;通过消除NMS、优化模型架构和引入创新模块等策…

WWDC24即将到来,ios18放大招

苹果公司即将在下周开全球开发者大会(WWDC)&#xff0c;大会上将展示其人工智能技术整合到设备和软件中的重大进展,包括与OpenAI的历史性合作。随着大会的临近,有关iOS 18及其据称采用AI技术支持的应用程序和功能的各种泄露信息已经浮出水面。 据报道,苹果将利用其自主研发的大…

Java 8 中的 Stream API,用于处理集合数据

Java 8 引入了 Stream API&#xff0c;使得处理集合数据变得更加简洁和高效。Stream API 允许开发者以声明式编程风格操作数据集合&#xff0c;而不是使用传统的迭代和条件语句。 一、基本概念 1.1 什么是 Stream Stream 是 Java 8 中的一个新抽象&#xff0c;它允许对集合数…

创新实训2024.06.03日志:完善Baseline Test框架、加入对Qwen-14B的测试

1. Baseline Test框架重构与完善 在之前的一篇博客中&#xff08;创新实训2024.05.29日志&#xff1a;评测数据集与baseline测试-CSDN博客&#xff09;&#xff0c;我介绍了我们对于大模型进行基线测试的一些基本想法和实现&#xff0c;包括一些基线测试的初步结果。 后来的一…

PS初级|写在纸上的字怎么抠成透明背景?

前言 上一次咱们讲了很多很多很多的抠图教程&#xff0c;这次继续。。。最近有小伙伴问我&#xff1a;如果是写在纸上的字&#xff0c;要怎么把它抠成透明背景。 这个其实很简单&#xff0c;直接来说就是选择通道来抠。但有一点要注意的是&#xff0c;写在纸上的字&#xff0…

算法-分治策略

概念 分治算法&#xff08;Divide and Conquer&#xff09;是一种解决问题的策略&#xff0c;它将一个问题分解成若干个规模较小的相同问题&#xff0c;然后递归地解决这些子问题&#xff0c;最后合并子问题的解得到原问题的解。分治算法的基本思想是将复杂问题分解成若干个较…

Java使用GDAL来解析KMZ及KML实战

目录 前言 一、在GQIS中浏览数据 1、关于空间参考 2、属性表格 二、GDAL的相关驱动及解析实战 1、GDAL中的KMZ驱动 2、GDAL实际解析 三、数据解析成果 1、KML解析结果 2、KMZ文件入库 四、总结 前言 在前面的博客中讲过纯Java实现Google地图的KMZ和KML文件的解析&…

python - DataFrame查询数据操作

学习目标 掌握获取df一列或多列数据的方法 知道loc和iloc的区别以及使用方法 知道df的query函数的使用方法 知道isin函数的作用和使用方法 获取DataFrame子集的基本方法 1.1 从前从后获取多行数据 案例中用到的数据集在文章顶部 LJdata.csv 前景回顾 head() & tail(…

范闲获取到庆帝与神庙的往来信件,用AES进行破解

关注微信公众号 数据分析螺丝钉 免费领取价值万元的python/java/商业分析/数据结构与算法学习资料 在《庆余年2》中&#xff0c;范闲与庆帝和神庙之间的权谋斗争愈演愈烈。一次偶然的机会&#xff0c;范闲从庆帝的密室中获取到几封与神庙往来的密信。然而&#xff0c;这封信件…

美团面试:百亿级分片,如何设计基因算法?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格&#xff0c;遇到很多很重要的架构类/设计类的场景题&#xff1a; 1.说说分库分表的基因算法&#xff1f…

使用matplotlib绘制折线条形复合图

使用matplotlib绘制折线条形复合图 介绍效果代码 介绍 在数据可视化中&#xff0c;复合图形是一种非常有用的工具&#xff0c;可以同时显示多种数据类型的关系。在本篇博客中&#xff0c;我们将探讨如何使用 matplotlib 库来绘制包含折线图和条形图的复合图。 效果 代码 imp…

【Linux】进程2——管理概念,进程概念

1.什么是管理&#xff1f; 那在还没有学习进程之前&#xff0c;就问大家&#xff0c;操作系统是怎么管理进行进程管理的呢&#xff1f; 很简单&#xff0c;先把进程描述起来&#xff0c;再把进程组织起来&#xff01; 我们拿大学为例子 最典型的管理者——校长最典型的被管理…

短视频矩阵源码----如何做正规开发规则分享:

一、什么是SaaS化服务技术开发&#xff1f; &#xff08;短视频矩阵系统是源头开发的应该分为3个端口---- 总后台控制端、总代理端口&#xff0c;总商户后台&#xff09; SaaS是软件即服务&#xff08;Software as a Service&#xff09;的缩写。它是一种通过互联网提供软件应…