算法金 | 不愧是腾讯,问基础巨细节 。。。


大侠幸会,在下全网同名「算法金」

0 基础转 AI 上岸,多个算法赛 Top

「日更万日,让更多人享受智能乐趣」

最近,有读者参加了腾讯算法岗位的面试,面试着重考察了基础知识,并且提问非常详细。

特别是关于AdaBoost算法的问题,面试官问了很多。

今天,我们就来和大家探讨一下 AdaBoost 算法的相关知识。

1. 概要

1.1 Adaboost 的起源和发展

Adaboost,全称为 Adaptive Boosting,由 Freund 和 Schapire 于 1996 年提出,是一种迭代的机器学习算法。Adaboost 的核心思想是通过组合多个弱分类器(weak classifiers),构建一个强分类器(strong classifier)。这种方法在各种应用场景中取得了显著的成功,尤其在分类问题上表现突出。

1.2 Adaboost 的基本思想

Adaboost 的基本思想是根据上一次分类器的错误率,调整训练样本的权重,使得那些被错误分类的样本在后续的分类器中得到更多的关注。通过不断迭代和调整权重,最终得到一个综合了多个弱分类器的强分类器。

2. Adaboost 的核心知识点

2.1 基础概念

Adaboost 是一种集成学习方法,集成了多个弱分类器来提高整体的分类性能。每个弱分类器的权重根据其分类准确度进行调整。

2.2 工作原理

Adaboost 的工作原理可以分为以下几个步骤:

  1. 初始化样本权重。
  2. 训练弱分类器。
  3. 计算弱分类器的错误率。
  4. 更新样本权重,使错误分类的样本权重增加。
  5. 构建最终的强分类器。

2.3 算法步骤

  • 初始化:为每个训练样本赋予相等的权重。
  • 迭代:对于每次迭代:
  • 训练一个弱分类器。
  • 计算分类误差率。
  • 更新样本权重,使误分类样本的权重增加。
  • 计算该分类器的权重。
  • 组合:将所有弱分类器组合成一个强分类器。

2.4 权重更新机制

2.5 弱分类器的选择

Adaboost 对弱分类器的选择没有严格的限制,可以使用决策树、线性分类器等。在实践中,决策树桩(决策树深度为1)常被用作弱分类器。

3. Adaboost 的数学基础

3.1 Adaboost 算法公式

Adaboost 的核心在于通过多次迭代训练弱分类器并组合这些弱分类器来构建一个强分类器。在每次迭代中,算法会调整样本的权重,使得那些被误分类的样本在后续的迭代中得到更多的关注。

3.2 损失函数

Adaboost 使用指数损失函数来衡量分类错误的程度。损失函数的形式为:

3.3 权重更新公式

代码示范

为了更好地理解 Adaboost 的数学基础,我们将在代码中实现这些公式。

import numpy as np# 初始化样本权重
n_samples = 100
weights = np.ones(n_samples) / n_samples# 假设我们有两个简单的弱分类器
def weak_classifier_1(x):return np.where(x[:, 0] > 0, 1, -1)def weak_classifier_2(x):return np.where(x[:, 1] > 0, 1, -1)# 模拟训练数据
X = np.random.randn(n_samples, 2)
y = np.where(X[:, 0] + X[:, 1] > 0, 1, -1)# 第一次迭代
pred_1 = weak_classifier_1(X)
error_1 = np.sum(weights * (pred_1 != y)) / np.sum(weights)
alpha_1 = 0.5 * np.log((1 - error_1) / error_1)
weights = weights * np.exp(-alpha_1 * y * pred_1)
weights /= np.sum(weights)# 第二次迭代
pred_2 = weak_classifier_2(X)
error_2 = np.sum(weights * (pred_2 != y)) / np.sum(weights)
alpha_2 = 0.5 * np.log((1 - error_2) / error_2)
weights = weights * np.exp(-alpha_2 * y * pred_2)
weights /= np.sum(weights)# 最终分类器
H = alpha_1 * weak_classifier_1(X) + alpha_2 * weak_classifier_2(X)
final_pred = np.sign(H)

4. 代码示范

4.1 数据准备

在这一部分,我们将使用一个内置的经典数据集——鸢尾花数据集(Iris Dataset)。这个数据集包含了三类鸢尾花的特征,常用于分类算法的演示。

from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import seaborn as sns# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target# 数据集可视化
sns.pairplot(sns.load_dataset("iris"), hue="species")
plt.show()

说明:

  • 我们使用 load_iris() 函数加载鸢尾花数据集,其中 X 为特征数据,y 为标签数据。
  • 使用 Seaborn 的 pairplot 函数可视化数据集,展示不同特征之间的关系。

4.2 Adaboost 算法实现

我们将使用 Scikit-learn 的 AdaBoostClassifier 来实现 Adaboost 算法,并进行训练和预测。

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import pandas as pd
import seaborn as sns# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 初始化 Adaboost 分类器
adaboost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=1),n_estimators=50,learning_rate=1.0,random_state=42
)# 训练模型
adaboost.fit(X_train, y_train)# 预测
y_pred = adaboost.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'分类准确率: {accuracy:.2f}')

说明:

  • 我们将数据集分为训练集和测试集,使用 train_test_split 函数,测试集占 30%。
  • 初始化 AdaBoostClassifier,设置基本分类器为决策树桩(DecisionTreeClassifier),迭代次数为 50。
  • 训练模型并使用测试集进行预测,计算并输出分类准确率。

运行后输出:

分类准确率: 1.00

4.3 结果分析

我们将进一步分析模型的性能,包括分类报告和混淆矩阵,并对结果进行可视化。

# 打印分类报告
print(classification_report(y_test, y_pred, target_names=iris.target_names))# 混淆矩阵
conf_matrix = confusion_matrix(y_test, y_pred)
conf_matrix_df = pd.DataFrame(conf_matrix, index=iris.target_names, columns=iris.target_names)# 混淆矩阵可视化
plt.figure(figsize=(10, 7))
sns.heatmap(conf_matrix_df, annot=True, cmap='Blues')
plt.title('Adaboost 分类结果 - 混淆矩阵')
plt.xlabel('预测标签')
plt.ylabel('真实标签')
plt.show()

说明:

  • 打印分类报告,包括每个类别的精确率、召回率和 F1 分数,帮助我们评估模型性能。
  • 计算混淆矩阵,并将其转换为 DataFrame 格式,便于可视化。
  • 使用 Seaborn 的 heatmap 函数可视化混淆矩阵,展示预测标签与真实标签之间的对应关系。

通过代码示范和结果分析,我们可以直观地了解 Adaboost 算法的实现过程及其在分类问题上的表现。

5. Adaboost 的优缺点

5.1 优点

  1. 高准确率:Adaboost 通过集成多个弱分类器,显著提高了分类准确率。
  2. 简单易用:Adaboost 的实现和应用相对简单,且无需对弱分类器进行大量调整。
  3. 鲁棒性:对噪声数据和异常值具有较高的鲁棒性,能够很好地处理复杂的分类问题。
  4. 无偏性:不容易过拟合,尤其在弱分类器是简单模型的情况下。

5.2 缺点

  1. 对噪声敏感:在数据中存在大量噪声时,Adaboost 的性能可能会下降,因为噪声数据会被赋予较高的权重。
  2. 计算复杂度较高:随着迭代次数的增加,计算量也会增加,尤其在处理大规模数据时。
  3. 需要大量的弱分类器:为了获得理想的分类效果,通常需要集成大量的弱分类器。

5.3 适用场景

  1. 文本分类:Adaboost 在自然语言处理中的文本分类任务中表现良好。
  2. 图像识别:用于识别图像中的目标,如人脸识别等。
  3. 生物信息学:在基因表达数据分类等生物信息学问题中具有广泛应用。
  4. 金融风控:用于信用评分、欺诈检测等金融领域的风险控制。

[ 抱个拳,总个结 ]

在本文中,我们详细介绍了 Adaboost 算法的核心概念和应用。首先,我们了解了 Adaboost 的起源和基本思想。接着,我们深入探讨了 Adaboost 的工作原理、算法步骤、权重更新机制和弱分类器的选择,并通过代码示范展示了其具体实现过程。

我们还介绍了 Adaboost 的数学基础,包括算法公式、损失函数和权重更新公式,使大侠们对其理论有了更深入的理解。在代码示范部分,我们结合武侠元素的数据集,详细展示了 Adaboost 算法在实际应用中的操作步骤,并对结果进行了可视化和分析。

随后,我们讨论了 Adaboost 的优缺点及其适用场景,帮助大侠们在实际应用中更好地评估和选择该算法。最后,通过具体的经典应用案例,如图像识别和文本分类,我们展示了 Adaboost 在不同领域的强大能力和广泛应用。

希望通过本文的介绍,大侠们能够更全面地了解和掌握 Adaboost 算法,在今后的学习和实践中,灵活运用这一强大的机器学习工具。

[ 算法金,碎碎念 ]

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;

同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/343570.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GIGE 协议摘录 —— GVCP 协议(二)

系列文章目录 GIGE 学习笔记 GIGE 协议摘录 —— 设备发现(一) GIGE 协议摘录 —— GVCP 协议(二) GIGE 协议摘录 —— GVSP 协议(三) GIGE 协议摘录 —— 引导寄存器(四) GIGE 协议…

抢人!抢人!抢人! IT行业某岗位已经开始抢人了!

所谓抢滩鸿蒙,人才先行。鸿蒙系统火力全开后,抢人已成鸿蒙市场的主题词! 智联招聘数据显示,春节后首周,鸿蒙相关职位数同比增长163%,是去年同期的2.6倍,2023年9-12月鸿蒙相关职位数同比增速为3…

Oracle EBS AP发票验证-计税期间出现意外错误解决方法

系统版本 RDBMS : 12.1.0.2.0 Oracle Applications : 12.2.6 问题症状: **打开发票题头或发票行“税详细信息”**错误提示如下: 由于以下原因而无法针对"税"窗口中所做的修改更新 Oraclee Payables信息: 尚未为税率或帐户来源税率设置可退回税/应纳税额帐户。请…

Mac下载Homebrew

通过command空格搜索终端打开 直接输入 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" 然后输入电脑密码 然后直接回车等待安装完成 注意⚠️:如果出现报错/opt/homebrew/bin is not in your PATH…

yum进阶——配置yum源

一、yum概述 yum的主要作用 解决依赖关系 自动安装 自动升级 各个系统中的安装软件服务 CentOS7 :yum -y 安装 rpm包 CentOS8 :dnf(yum的升级版), Ubantu(22.04) :apt -y 安装,安装源为/…

民主测评要做些什么?

民主测评,作为一种重要的民主管理工具,旨在通过广泛征求群众意见,对特定对象或事项进行客观、公正的评价。它不仅是推动民主参与、民主监督的重要手段,也是提升治理效能、促进社会和谐的有效途径。以下将详细介绍民主测评的主要过…

GNU Radio实现OFDM Radar

文章目录 前言一、GNU Radio Radar Toolbox编译及安装二、ofdm radar 原理讲解三、GNU Radio 实现 OFDM Radar1、官方提供的 grc①、grc 图②、运行结果 2、修改后的便于后续可实现探测和通信的 grc①、grc 图②、运行结果 四、资源自取 前言 本文使用 GNU Radio 搭建 OFDM Ra…

分水岭算法分割和霍夫变换识别图像中的硬币

首先解释一下第一种分水岭算法: 一、分水岭算法 分水岭算法是一种基于拓扑学的图像分割技术,广泛应用于图像处理和计算机视觉领域。它将图像视为一个拓扑表面,其中亮度值代表高度。算法的目标是通过模拟雨水从山顶流到山谷的过程&#xff0…

代码解读 | Hybrid Transformers for Music Source Separation[03]

一、背景 接着上一篇代码解读 | Hybrid Transformers for Music Source Separation[02]文章,继续对Hybrid Transformer Demucs 代码进行解读。 解读目标:明确数据从进入算法,在算法内部,以及在算法输出 这三个阶段中 数据的大小是…

如何执行VMware P2V迁移|VMware Converter和替代方案

VMware中的P2V是什么? 我们常说的VMware P2V其实指的就是“物理到虚拟”,将工作负载从物理机器转换或迁移到虚拟机(VM)的过程,能够使您无需从头开始费力地创建和配置新虚拟机。 就像您可以使用Disk2vhd执行Hyper-V物理…

如何在virtualbox上安装Linux系统(centerOS)

提示:共同学习 注意:一定要在BIOS中的虚拟化打开。 文章目录 第一步: 第一步: 启动 、显示开启 centos基础安装 ​ ​

九大微服务监控工具详解

Prometheus Prometheus 是一个开源的系统监控、和报警工具包,Prometheus 被设计用来监控“微服务架构”。 主要解决: 监控和告警:Prometheus 可以对系统、和应用程序进行实时监控,并在出现问题时发送告警;数据收集和…

超详细的java Comparable,Comparator接口解析

前言 Hello大家好呀,在java中我们常常涉及到对象的比较,不同于基本数据类型,对于我们的自定义对象,需要我们自己去建立比较标准,例如我们自定义一个People类,这个类有name和age两个属性,那么问…

Bev 车道标注方案及复杂车道线解决

文章目录 1. 数据采集方案1.1 传感器方案1.2 数据同步2. 标注方案2.1 标注注意项2.2 4d 标注(时序)2.2.1 4d标签制作2.2.2 时序融合的作用2.2.2.1 时序融合方式2.2.2.2 时序融合难点2.2.2.2 时序实际应用情况3. 复杂车道线解决3.1 split 和merge车道线的解决3.2 大曲率或U形车道…

自然语言处理(NLP)—— 语言检测器

1. 文章概述 1.1 目的 在本篇文章中,我们将构建一个语言检测器,这是一个能够识别文本语言的简单分类器。这是一个能够识别文本是用哪种语言写的程序。想象一下,你给这个程序一段文字,它就能告诉你这是英语、法语还是其他语言。 …

C语言过度C++语法补充(面向对象之前语法)

目录 1. C相较于C语言新增的语法 0. C 中的输入输出 1. 命名空间 1. 我们如何定义一个命名空间? 2. 如何使用一个命名空间 3. 命名空间中可以定义什么? 4. 在 相同或者不同 的文件中如果出现 同名的命名空间 会如何? 5. 总结~~撒花~~…

优维「Easy分析」:一款故障根因分析小神器

背 景 随着微服务架构的普及,现代企业的IT基础设施已经变得越来越复杂。单一的服务可能有多个下游依赖,而这些依赖又可能有自己的子依赖,和主机资源的依赖。在这样的环境中,当某个服务发生故障,确定具体的原因变得尤为…

【Linux】The server quit without updating PID file的几种解决方案

😎 作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。 🤓 同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深…

微服务架构-微服务实施

目录 一、概述 二、微服务拆分 2.1 概述 2.2 拆分原则 2.3 拆分方法 2.3.1 以数据为维度进行拆分 2.3.2 按照使用场景拆分 2.3.3 重要和非重要的拆分 2.3.4 变和不变的拆分 三、微服务通信 3.1 概述 3.2 微服务通信方式选择 3.3 微服务编排 3.4 API接口设计 3.5 …

C++基础与深度解析 | 类与面向对象编程 | 数据成员 | 成员函数 | 访问限定符与友元 | 构造、析构成员函数 | 字面值类、成员指针与bind交互

文章目录 一、结构体与对象聚合二、成员函数(方法)三、访问限定符与友元1.访问限定符2.友元(慎用) 四、构造、析构与复制成员函数1.构造函数2.析构函数3.补充 五、字面值类,成员指针与bind交互1.字面值类2.成员指针3.b…