二叉树的实现(初阶数据结构)

1.二叉树的概念及结构

1.1 概念

一棵二叉树是结点的一个有限集合,该集合:

    1.或者为空

    2.由一个根结点加上两棵别称为左子树和右子树的二叉树组成

 从上图可以看出:

    1.二叉树不存在度大于2的结点

    2.二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

1.2 特殊二叉树

    1.满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树,也就是说没如果一个二叉树的层数为K,且结点总数是2^k-1,则它就是满二叉树。

    2.完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当每一个结点都与深度为K的满二叉树中编号从1至n的结点——对应时称之为完全二叉树,要注意的是满二叉树是一中特殊的完全二叉树。

 

1.3二叉树的性质

    1.若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点。

    2.若规定根结点的层数为1,则深度为h的二叉树的最大结点数是2^h-1。

    3.对任何一棵二叉树,如果度为0其叶子结点个数为a,度为2的分支个数为b,则有a=b+1。

    4.若规定根结点的层数为1,具有n个结点的满二叉树的深度,h=log2(n+1).(ps:以2为底,n+1为对数)

    5.对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有结点从0开始编号,则对于序号为i的结点有:

    1.若i>0,i的位置结点的双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点

    2.2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子

    3.2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

1.4二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1.顺序存储

顺序结构村塾就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费,而现实中使用只有堆才会使用数组来存储,二叉树顺序存储在物理上是一个数组,在逻辑上是一棵二叉树。

2.链式存储

二叉树的链式存储结构是指用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址。链式结构又分为二叉链和三叉链。

2.二叉树的实现

#pragma once#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>
typedef char BTDataType;typedef struct BinaryTreeNode
{BTDataType _data;struct BinaryTreeNode* _left;struct BinaryTreeNode* _right;
}BTNode;// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi);
// 二叉树销毁
void BinaryTreeDestory(BTNode** root);
// 二叉树节点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);
// 层序遍历
void BinaryTreeLevelOrder(BTNode* root);
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);
//二叉树的高度
int TreeHigh(BTNode* root);

2.1创建新的结点

调用函数BuyNode来创建新的结点

BTNode* BuyNode(BTDataType x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc fail");return NULL;}node->_data = x;node->_left = NULL;node->_right = NULL;return node;
}

2.2通过前序遍历数组来构建二叉树

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
//a为我们所要遍历的数组
//n是最大数组的长度
//pi是我们用来遍历数组的指针
//当遍历是遇到‘#’或者指针超出了数组的范围就返回NULL
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi)
{if (a[*pi] == '#' || *pi >= n){printf("NULL ");(*pi)++;return NULL;}//创建一个新的二叉树的节点BTNode* dst = BuyNode(a[*pi]); printf("%c ", dst->_data);(*pi)++;dst->_left = BinaryTreeCreate(a, n, pi);dst->_right = BinaryTreeCreate(a, n, pi);return dst;
}

构建出来的二叉树如下:

 2.3二叉树的销毁

实现二叉树的销毁时,我们要正确选择以哪种遍历的方式,这里使用后序遍历,从底层叶子层开始,先释放左子树和右子树的空间,再释放根结点的空间,如果先对根结点释放,就找不到它所对应的左子树和右子树了。

//二叉树的销毁
void BinaryTreeDestory(BTNode** root)
{if (*root == NULL){return;}BinaryTreeDestory(&((*root)->_left));BinaryTreeDestory(&((*root)->_right));free(*root);*root = NULL;return;}

2.4计算二叉树的结点个数

这里我罗列了两种方法:

一种是用一个静态变量通过size++的形式来计算结点的个数(局部的静态变量只能初始化一次)

另一种是递归遍历二叉树通过放回:  左子树+右子树+1

int BinaryTreeSize(BTNode* root)
{//方法一://用静态变量(在堆上,不在栈上)改变局部变量 -> 使得递归的size可以累加起来,但是局部的静态只能初始化一次/*static int size = 0;if (root == NULL){return 0;}else++size;BinaryTreeSize(root->_left);BinaryTreeSize(root->_right);*///方法二://如果我们当前的节点为空,也就是说我们已经到了叶子节点的左右节点,也就是没有节点//所以我们需要返回0if (root == NULL){return 0;}//如果我们当前的节点的左指针和右指针都是空的话,也就是说这是我们的叶子节点//就返回1,也就是只有一个节点if (root->_left == NULL && root->_right == NULL){return 1;}//使用递归遍历我们的二叉树,即分别统计我们左子树的节点个数再加上右子树中的节点个数再加上1//因为我们需要将我们当前所指的节点算上return BinaryTreeSize(root->_left) + BinaryTreeSize(root->_right) + 1;}

2.5计算二叉树叶子结点的个数

int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL){return 0;}//如果我们的节点的左右指针全部都为空,那就是我们的叶子节点if (root->_left == NULL && root->_right == NULL){return 1;}//返回我们左子树中的叶子节点和右子树中的叶子节点之和return BinaryTreeLeafSize(root->_left) + BinaryTreeLeafSize(root->_right);
}

2.6二叉树第k层的结点个数

二叉树第一层结点个数为1,第k层结点是第一层结点往下找k-1层,第二层的结点往下找k-2层,当k为1的时候返回的结果就是找的k层的结点的个数的总和。

int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL){return 0;}if (k == 1){return 1;}//分别遍历我们的左右子树,并且将我们的k的参数--,当我们的k为1时,就到达了我们所想要查找对应的层return BinaryTreeLevelKSize(root->_left, k - 1) + BinaryTreeLevelKSize(root->_right, k - 1);
}

2.7查找值为x的结点

查找第一个指定值为x的结点,同过前序遍历的方法来寻找第一个值为x的结点

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL){return NULL;}if (root->_data == x){return root;}BTNode* ret1 = BinaryTreeFind(root->_left, x);if (ret1){return ret1;}/*BTNode* ret2 = BinaryTreeFind(root->_right, x);if (ret2){return ret2;}return NULL;*/return BinaryTreeFind(root->_right, x);
}

 2.8二叉树前序遍历

前序遍历的顺序是根 - 左子树 - 右子树

void BinaryTreePrevOrder(BTNode* root)
{if (root == NULL){return;}printf("%c ", root->_data);BinaryTreePrevOrder(root->_left);BinaryTreePrevOrder(root->_right);}

2.9二叉树中序遍历

中序遍历的顺序是左子树 - 根 - 右子树

void BinaryTreeInOrder(BTNode* root)
{if (root == NULL){return;}BinaryTreeInOrder(root->_left);printf("%c ", root->_data);BinaryTreeInOrder(root->_right);}

2.10二叉树后序遍历

后序遍历的顺序是左子树 - 右子树 - 根

void BinaryTreePostOrder(BTNode* root)
{if (root == NULL){return;}BinaryTreePostOrder(root->_left);BinaryTreePostOrder(root->_right);printf("%c ", root->_data);}

2.11二叉树层序遍历

需要使用一个队列实现层序遍历,先将指向根结点的指针入队,当根结点出队列的时候,将它的左右子树的结点的指针入队,就达到了层层遍历的效果

void BinaryTreeLevelOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%c ", front->_data);if (front->_left)QueuePush(&q, front->_left);if (front->_right)QueuePush(&q, front->_right);}QueueDestroy(&q);
}

2.12判断二叉树是否为完全二叉树

思路是通过层序遍历的方法,二叉树的叶子结点的下一层节点全部都是NULL,那么在根出队列,左右子树进队列的情况下:

当出队列出到空的时候,判断队列里面的结点是否有非空结点,如果有则证明不是完全二叉树,

反之队列里面都是空结点,则是完全二叉树。

// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);//遇到第一个空,就可以开始判断,如果队列中还有非空,就不是完全二叉树if (front == NULL){break; }QueuePush(&q, front->_left);QueuePush(&q, front->_right);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);//如果有非空,就不是完全二叉树if (front){QueueDestroy(&q);printf("不是完全二叉树\n");return 0;}}QueueDestroy(&q);printf("是完全二叉树\n");return 1;
}

2.13求二叉树的高度

int TreeHigh(BTNode* root)
{if (root == NULL){return 0;}int lefthigh = TreeHigh(root->_left);int righthigh = TreeHigh(root->_right);return lefthigh > righthigh ? lefthigh + 1 : righthigh + 1;//return TreeHigh(root->_left) > TreeHigh(root->_right) ? TreeHigh(root->_left) + 1 : TreeHigh(root->_right) + 1;
}

3.二叉树总代码

3.1 Tree.h

#pragma once#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>
typedef char BTDataType;typedef struct BinaryTreeNode
{BTDataType _data;struct BinaryTreeNode* _left;struct BinaryTreeNode* _right;
}BTNode;// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi);
// 二叉树销毁
void BinaryTreeDestory(BTNode** root);
// 二叉树节点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);
// 层序遍历
void BinaryTreeLevelOrder(BTNode* root);
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);
//二叉树的高度
int TreeHigh(BTNode* root);

3.2 Tree.c

#define _CRT_SECURE_NO_WARNINGS 1#include"Tree.h"
#include"Queue.h"BTNode* BuyNode(BTDataType x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc fail");return NULL;}node->_data = x;node->_left = NULL;node->_right = NULL;return node;
}// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi)
{//这里我们的a为我们的数组//n为我们数组的最大长度//pi为我们遍历数组的指针//这里我们使用'#'来表示NULL//当我们所指向的位置的元素为#或者我们的指针已经超过了数组的范围的时候,我们就需要返回NULL//并且将我们的指针后移if (a[*pi] == '#' || *pi >= n){printf("NULL ");(*pi)++;return NULL;}//创建一个新的二叉树的节点BTNode* dst = BuyNode(a[*pi]); printf("%c ", dst->_data);(*pi)++;//将我们之前开创的节点的左右指针指向数组中所对应的节点//如果我们的对应数组中的数据不为空的话,我们的左右指针都会指向新的对应的节点//如果我们的节点为空的话,我们会得到的返回值为NULLdst->_left = BinaryTreeCreate(a, n, pi);dst->_right = BinaryTreeCreate(a, n, pi);return dst;
}//二叉树的销毁
void BinaryTreeDestory(BTNode** root)
{if (*root == NULL){return;}BinaryTreeDestory(&((*root)->_left));BinaryTreeDestory(&((*root)->_right));free(*root);*root = NULL;return;}//计算二叉树的节点个数int BinaryTreeSize(BTNode* root)
{//用静态变量(在堆上,不在栈上)改变局部变量 -> 使得递归的size可以累加起来,但是局部的静态只能初始化一次/*static int size = 0;if (root == NULL){return 0;}else++size;BinaryTreeSize(root->_left);BinaryTreeSize(root->_right);*///如果我们当前的节点为空,也就是说我们已经到了叶子节点的左右节点,也就是没有节点//所以我们需要返回0if (root == NULL){return 0;}//如果我们当前的节点的左指针和右指针都是空的话,也就是说这是我们的叶子节点//就返回1,也就是只有一个节点if (root->_left == NULL && root->_right == NULL){return 1;}//使用递归遍历我们的二叉树,即分别统计我们左子树的节点个数再加上右子树中的节点个数再加上1//因为我们需要将我们当前所指的节点算上return BinaryTreeSize(root->_left) + BinaryTreeSize(root->_right) + 1;}//统计二叉树叶子节点的个数
int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL){return 0;}//如果我们的节点的左右指针全部都为空,那就是我们的叶子节点if (root->_left == NULL && root->_right == NULL){return 1;}//返回我们左子树中的叶子节点和右子树中的叶子节点之和return BinaryTreeLeafSize(root->_left) + BinaryTreeLeafSize(root->_right);
}// 二叉树第k层节点个数int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL){return 0;}if (k == 1){return 1;}//分别遍历我们的左右子树,并且将我们的k的参数--,当我们的k为1时,就到达了我们所想要查找对应的层return BinaryTreeLevelKSize(root->_left, k - 1) + BinaryTreeLevelKSize(root->_right, k - 1);
}// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL){return NULL;}if (root->_data == x){return root;}BTNode* ret1 = BinaryTreeFind(root->_left, x);if (ret1){return ret1;}/*BTNode* ret2 = BinaryTreeFind(root->_right, x);if (ret2){return ret2;}return NULL;*/return BinaryTreeFind(root->_right, x);
}// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{if (root == NULL){return;}printf("%c ", root->_data);BinaryTreePrevOrder(root->_left);BinaryTreePrevOrder(root->_right);}// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{if (root == NULL){return;}BinaryTreeInOrder(root->_left);printf("%c ", root->_data);BinaryTreeInOrder(root->_right);}// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{if (root == NULL){return;}BinaryTreePostOrder(root->_left);BinaryTreePostOrder(root->_right);printf("%c ", root->_data);}// 层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%c ", front->_data);if (front->_left)QueuePush(&q, front->_left);if (front->_right)QueuePush(&q, front->_right);}QueueDestroy(&q);
}// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);//遇到第一个空,就可以开始判断,如果队列中还有非空,就不是完全二叉树if (front == NULL){break; }QueuePush(&q, front->_left);QueuePush(&q, front->_right);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);//如果有非空,就不是完全二叉树if (front){QueueDestroy(&q);printf("不是完全二叉树\n");return 0;}}QueueDestroy(&q);printf("是完全二叉树\n");return 1;
}int TreeHigh(BTNode* root)
{if (root == NULL){return 0;}int lefthigh = TreeHigh(root->_left);int righthigh = TreeHigh(root->_right);return lefthigh > righthigh ? lefthigh + 1 : righthigh + 1;//return TreeHigh(root->_left) > TreeHigh(root->_right) ? TreeHigh(root->_left) + 1 : TreeHigh(root->_right) + 1;
}

3.3 Queue.h

#pragma once#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>typedef struct BinaryTreeNode* QDataType;typedef struct QueueNode
{struct QueueNode* next;QDataType val;
}QNode;typedef struct Queue
{QNode* phead;QNode* ptail;int size;
}Queue;void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);
//队尾插入
void QueuePush(Queue* pq, QDataType x);//队头删除
void QueuePop(Queue* pq);//队头和队尾的数据
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);bool QueueEmpty(Queue* pq);
int QueueSize(Queue* pq);

3.4 Queue.c

#define _CRT_SECURE_NO_WARNINGS 1#include"Queue.h"void QueueInit(Queue* pq)
{assert(pq);pq->phead = NULL;pq->ptail = NULL;pq->size = 0;
}
void QueueDestroy(Queue* pq)
{assert(pq);QNode* cur = pq->phead;while (cur){QNode* next = cur->next;free(cur);cur = next;}pq->phead = pq->ptail = NULL;pq->size = 0;
}//队尾插入
void QueuePush(Queue* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");return;}newnode->next = NULL;newnode->val = x;if (pq->ptail == NULL){pq->phead = pq->ptail = newnode;}else{pq->ptail->next = newnode;pq->ptail = newnode;}pq->size++;
}int QueueSize(Queue* pq)
{assert(pq);return pq->size;
}//队头删除
void QueuePop(Queue* pq)
{assert(pq);assert(QueueSize(pq) != 0);//一个节点if (pq->phead == pq->ptail){free(pq->phead);pq->phead = pq->ptail = NULL;}//多个节点else{QNode* next = pq->phead->next;free(pq->phead);pq->phead = next;}pq->size--;
}QDataType QueueFront(Queue* pq)
{assert(pq);assert(pq->phead);return pq->phead->val;
}QDataType QueueBack(Queue* pq)
{assert(pq);assert(pq->ptail);return pq->ptail->val;
}bool QueueEmpty(Queue* pq)
{assert(pq);return pq->size == 0;
}

3.5 Test.c

#define _CRT_SECURE_NO_WARNINGS 1#include "Tree.h"int main()
{char a[] = { 'A','B','D','#','#','E','#','H','#','#','C','F','#','#','G','#','#' };int b = 0;int* pi = &b;BTNode* Btree = BinaryTreeCreate(a, 16, pi);printf("\n");//前序遍历BinaryTreePrevOrder(Btree);printf("\n");//中序遍历BinaryTreeInOrder(Btree);printf("\n");//后序遍历BinaryTreePostOrder(Btree);printf("\n");//层次遍历BinaryTreeLevelOrder(Btree);printf("\n");int number = BinaryTreeSize(Btree);printf("%d", number);printf("\n");//查找为x的节点BTNode* find = BinaryTreeFind(Btree, 'A');printf("%c", find->_data);printf("\n");//查询第K层的节点个数int W = BinaryTreeLevelKSize(Btree, 3);printf("%d\n", W);//查询叶子节点的个数int count = BinaryTreeLeafSize(Btree);printf("%d\n", count);//判断当前是否为一颗完全二叉树int ret = BinaryTreeComplete(Btree);int x = TreeHigh(Btree);printf("%d\n", x);BinaryTreeDestory(&Btree);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/344470.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

造假高手——faker

在测试写好的代码时通常需要用到一些测试数据&#xff0c;大量的真实数据有时候很难获取&#xff0c;如果手动制造测试数据又过于繁重无聊&#xff0c;显得不够优雅&#xff0c;今天我们介绍的faker这个轮子可以完美的解决这个问题。faker是一个用于生成各种类型假数据的库&…

C++STL初阶(3):string模拟实现的完善

1.流提取>>的优化&#xff08;利用缓存区的思想&#xff09; istream& operator>>(istream& is,string& str) {str.clear();char c;c is.get();while (c ! \0 && c ! \n) {str c;c is.get();}return is; } 在上文的对string的实践中&#…

Android Lottie 体积优化实践:从 6.4 MB 降到 530 KB

一、说明 产品提出需求&#xff1a;用户有 8 个等级&#xff0c;每个等级对应一个奖牌动画。 按照常用的实现方式&#xff1a; 设计提供 8 个 lottie 动画&#xff08;8 个 json 文件&#xff09;。研发将 json 文件打包进入 APK 中。根据不同等级播放指定的动画。 每一个 …

React + SpringBoot实现图片预览和视频在线播放,其中视频实现切片保存和分段播放

图片预览和视频在线播放 需求描述 实现播放视频的需求时&#xff0c;往往是前端直接加载一个mp4文件&#xff0c;这样做法在遇到视频文件较大时&#xff0c;容易造成卡顿&#xff0c;不能及时加载出来。我们可以将视频进行切片&#xff0c;然后分段加载。播放一点加载一点&am…

Nginx(openresty) 查看连接数和并发送

1 通过浏览器查看 #修改nginx配置文件 location /status {stub_status on;access_log off;allow 192.168.50.0/24;deny all;} #重新加载 sudo /usr/local/openresty/nginx/sbin/nginx -s reloadActive connections //当前 Nginx 当前处理的活动连接数。 server accepts handl…

【kubernetes】k8s集群中的ingress(对外服务)规则详解

目录 一、Ingress 简介 1.1service的作用 1.2外部访问方案 (四种&#xff09;&#x1f339;&#x1f339;&#x1f339; 部署externalIPs 1.3Ingress 是什么 二、Ingress 组成&#x1f339;&#x1f339;&#x1f339; 三、Ingress 工作原理&#x1f431;&#x1f…

kafka的leader和follower

leader和follower kafka的leader和follower是相对于分区有意义的&#xff0c;不是相对于broker。 因为每个分区都有leader和follower, leader负责读写数据。 follower负责复制leader的数据保存到自己的日志数据中&#xff0c;并在leader挂掉后重新选举出leader。 kafka会再…

九家大模型“决战”高考!AI作文哪家强?阅卷名师点评来了!

2024.06.07 本文字数&#xff1a;12474&#xff0c;阅读时长大约21分钟 导读&#xff1a;语文老师对AI作文的评价是&#xff0c;“中规中矩&#xff0c;没有‘血肉’&#xff0c;缺一点情感和灵气。” 作者 | 第一财经 刘晓洁 冯小芯 马一凡 吕倩 又到一年高考季&#xff0c;…

使用树莓派和 L298N 来 DIY 小车底盘

树莓派小车可以作为 STEM&#xff08;科学、技术、工程、数学&#xff09;教育的工具&#xff0c;在实际操作中帮助学生理解和学习电子技术、编程和机器人原理。可以培养学生的动手能力、解决问题的能力和创新思维。 随着近年 AI 技术的高速发展&#xff0c;SLAM、VSLAM 甚至带…

[office] Excel教学:Excel通配符怎么用? #其他#职场发展

Excel教学&#xff1a;Excel通配符怎么用&#xff1f; 尽管Excel使用了很多年&#xff0c;但很多人都还是忽略了Excel通配符的存在&#xff0c;不知道通配符是什么&#xff0c;不知道如何使用它。今天我就完整地介绍一下通配符&#xff0c;让你彻底地认识通配符。 关于通配符…

结构体(1)<C语言>

导言 结构体是C语言中的一种自定义类型&#xff0c;它的值&#xff08;成员变量&#xff09;可以是多个&#xff0c;且这些值可以为不同类型&#xff0c;这也是和数组的主要区别&#xff0c;下面将介绍它的一些基本用法&#xff0c;包括&#xff1a;结构体的创建、结构体变量的…

MySQL基础_10.约束

文章目录 第一章、约束1.1 约束的定义1.2 非空约束1.3 唯一性约束1.4 主键约束1.5 自增列1.6 外键约束1.7 CHECK约束1.8 DEFAULT约束 第一章、约束 1.1 约束的定义 约束是对表中字段的限制。 约束按照作用范围可以分为&#xff1a;列级约束和表级约束 列级约束&#xff1a;声…

VMware ESXi 8.0U2c macOS Unlocker OEM BIOS 集成网卡驱动 Marvell AQC 网卡定制版

VMware ESXi 8.0U2c macOS Unlocker & OEM BIOS 集成网卡驱动 Marvell AQC 网卡定制版 VMware ESXi 8.0U2c macOS Unlocker & OEM BIOS 集成网卡驱动和 NVMe 驱动 (集成驱动版) 发布 ESXi 8.0U2 集成驱动版&#xff0c;在个人电脑上运行企业级工作负载 请访问原文链…

基于SpringBoot+Vue旅游民宿信息管理系统设计和实现(源码+LW+调试文档+讲解等)

&#x1f497;博主介绍&#xff1a;✌全网粉丝1W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f31f;文末获取源码数据库&#x1f31f; 感兴趣的可以先收藏起来&#xff0c;还…

计算机SCI期刊,中科院2区,IF=6.9,收稿范围非常广泛

一、期刊名称 Journal of King Saud University—Computer and Information Sciences 二、期刊简介概况 期刊类型&#xff1a;SCI 学科领域&#xff1a;计算机科学 影响因子&#xff1a;6.9 中科院分区&#xff1a;2区 三、期刊征稿范围 《沙特国王大学计算机与信息科学杂…

电脑提示msvcp140.dll丢失的解决方法(附带详细msvcp140.dll文件分析)

msvcp140.dll是一个动态链接库&#xff08;DLL&#xff09;文件&#xff0c;属于Microsoft Visual C 2015 Redistributable的一部分。它全称为 "Microsoft C Runtime Library" 或 "Microsoft C Runtime Library"&#xff0c;表明该文件是微软C运行时库的一…

【数据可视化系列】使用Python和Seaborn绘制相关性热力图

热力图&#xff08;Heatmap&#xff09;是一种数据可视化工具&#xff0c;它通过使用颜色的深浅来展示数据矩阵中数值的大小或密度。在热力图中&#xff0c;每种颜色的深浅代表数据的一个特定值或值的范围&#xff0c;通常使用红色、黄色和绿色等颜色渐变来表示数据的热度&…

《数字电路》

问答题4*5 在数字电路中&#xff0c;三极管经常工作在哪两种开关状态&#xff1f; 在数字电路中&#xff0c;三极管经常工作在饱和导通状态和截止状态。 时序电路根据输出信号分为哪两类&#xff1f; 时序电路根据输出信号分为莫尔型和米里型两类。 写出三种以上常用的二-十…

JVM学习-监控工具(三)

jconsole 从Java5开始&#xff0c;在JDK中自带的java监控和管理控制台用于对JVM中内存、线程、和类等的监控&#xff0c;是一个基本JMX(java management extendsions)的GUI性能监控工具 三种连接方式 Local&#xff1a;使用JConsole连接是一个正在本地系统运行的JVM&#xf…

XR和Steam VR项目合并问题

最近有一个项目是用Steam VR开发的&#xff0c;里面部分场景是用VRTK框架做的&#xff0c;还有一部分是用SteamVR SDK自带的Player预制直接开发的。 这样本身没有问题&#xff0c;因为最终都是通过SteamVR SDK处理的&#xff0c;VRTK也管理好了SteamVR的逻辑&#xff0c;并且支…