Elastic Search 8.14:更快且更具成本效益的向量搜索,使用 retrievers 和重新排序提升相关性,RAG 和开发工具

作者:来自 Elastic Yaru Lin, Ranjana Devaji

我们致力于突破搜索开发的界限,并专注于为搜索构建者提供强大的工具。通过我们的最新更新,Elastic 对于处理以向量表示的大量数据的客户来说变得更加强大。这些增强功能保证了更快的速度、降低的存储成本以及软件和硬件之间的无缝集成。

Elastic Search 8.14 现已在 Elastic Cloud 上推出,这是唯一包含最新版本中所有新功能的托管 Elasticsearch 产品。你还可以下载 Elastic Stack 和我们的云编排产品(Elastic Cloud Enterprise 和 Elastic Cloud for Kubernetes),以获得自我管理的体验。

Elastic 8.14 中还有哪些新功能?查看 8.14 公告帖子了解更多信息。

带来极快的向量搜索

在我们的使命中,为搜索构建者提供最强大的开发平台,现在使用向量进行数十亿规模操作的客户可以在 Elastic 中获得更多的效益。我们的更新显著提升了向量索引和搜索速度,降低了存储成本,并提供了软件和硬件之间的协同作用。

我们对计算向量之间距离的代码库进行了改进,这使得处理向量数据时的二进制比较速度比 Lucene 的实现快了多达 6 倍。这一优化对向量搜索速度产生了显著影响。

Elasticsearch 的 Python 客户端现在支持 orjson,这是基准测试中最快的 Python JSON 库,可以使numpy向量的索引速度提高多达 10 倍。

标量量化允许以稍微降低的保真度编码向量,但能大幅节省空间。在创建带有向量的新索引时,不再需要先将索引类型设置为 int8_hnsw。相反,将默认使用 int8向量值,为用户提供成本效益高且准确的向量搜索。我们的系统评估发现,标量量化对检索性能的影响微乎其微。

在 Elastic Cloud 上使用向量搜索的客户,无论使用哪家云服务提供商,都可以利用为向量优化的硬件配置文件以获得最佳的软件性能。这些硬件配置文件现在不仅在 AWS 上可用,还在 Azure 和 GCP 上提供。

用检索器和重新排序使搜索相关性普及

检索器(retrievers)和重新排名(reranking)在提高搜索结果的相关性和准确性方面发挥着至关重要的作用。我们的更新对向量搜索用户和使用更传统模型(例如 BM25)的用户都有影响。

我们将检索器(retrievers)抽象添加到 _search API,以便使用 standard、knn 或 rrf 方法返回热门命中。这使用户能够更轻松地构建复杂的多阶段检索,而无需复杂的管道。

例如,要一起使用 KNN 和 BM25 检索方法,不再需要使用管道定义阶段来执行 KNN 搜索、检索结果的 ID,然后对所述 ID 执行 BM25 搜索。相反,检索器树可以直接构建到搜索查询中:

GET index/_search
{"retriever": {"rrf": {"window_size": 100,"retrievers": [{"knn": {"field": "vector","k": 3,"num_candidates": 10,"query_vector": [1, 2, 3]}},{"standard": {"query": {"match": {"message": {"query": "{{query_string}}"    }}}}}]}},"size": 5,"fields": ["message"]
}

对检索到的文档重新排序可以通过返回与搜索查询相关的文档的相关性排名来进一步提高相关性。重新排名有效地向所有用户提供语义搜索:RAG 系统将能够依赖于上下文最相关的顶部结果,而传统搜索(例如 BM25)将能够将最相关的结果显示在顶部。

Elastic 是唯一支持 Cohere Rerank 3 模型的向量数据库,并通过我们的 _inference API 无缝地使用该模型进行重新排名,无需复杂的多个查询或重新索引文档。要使用 Cohere 模型对检索结果重新排序,请首先配置推理端点:

PUT _inference/rerank/cohere_rerank {"service": "cohere","service_settings": {"api_key": <API-KEY>, "model_id": "rerank-english-v3.0"},"task_settings": {"top_n": 10,"return_documents": true}}

指定推理端点后,通过传入用于检索的原始查询以及搜索检索到的文档,使用它对结果进行重新排序。

POST _inference/rerank/cohere_rerank{"input": [{{query_results}}], "query": "{{query_string}}" }

提升 RAG 体验

我们最新的工具和增强功能旨在提升 RAG 体验。 Playground 和带有 Jupyter Notebook 的开发控制台都使用户能够快速实验、改进和迭代。

在 Playground 中,开发人员可以选择从多个第三方数据源提取的多个索引来试验和完善语义文本查询、导出生成的代码,并最终设计会话式搜索体验。这简化了 RAG 实施,并允许使用 Elasticsearch 数据快速构建聊天体验原型,以支持 LLM 响应。

可嵌入开发控制台(Dev Console)现在在 Kibana 中随处可见,可通过预先填充的上下文代码片段以及 Jupyter Notebook 来快速启动查询开发。

我们增加了对从 Azure OpenAI 获取嵌入的支持,解锁高级 AI 功能并丰富 RAG 的功能和见解。 OpenAI 完成任务现已在推理处理器中可用,简化了生成智能响应的工作流程并提高了 RAG 交互的整体效率。

工具增强可更有效地处理数据

高效地将数据加载到 Elastic 中并在其中处理数据的能力对于维护有效的搜索应用程序至关重要。这些增强功能允许用户根据其特定需求定制服务并简化开发和运营流程:

  • 使用 ES|QL 轻松执行查询并将结果自动转换为 Java 对象和 PHP 对象。
  • 数据提取服务是开放代码。
  • GraphQL 连接器现已处于技术预览阶段。 GraphQL 支持声明式数据获取,客户端可以从 API 中准确指定所需的数据。
  • Connector API 现已处于测试阶段。
  • 支持 GitHub Connector 的 GitHub App 身份验证。

试试看

请阅读发行说明中了解这些功能以及更多信息。

现有 Elastic Cloud 客户可以直接从 Elastic Cloud 控制台访问其中许多功能。没有利用云上的 Elastic?开始免费试用。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

在这篇博文中,我们可能使用或引用了第三方生成人工智能工具,这些工具由其各自所有者拥有和运营。 Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害负责。使用人工智能工具处理个人、敏感或机密信息时请务必谨慎。你提交的任何数据都可能用于人工智能培训或其他目的。无法保证你提供的信息将得到安全或保密。在使用之前,你应该熟悉任何生成式人工智能工具的隐私惯例和使用条款。

Elastic、Elasticsearch、ESRE、Elasticsearch Relevance Engine 和相关标志是 Elasticsearch N.V. 的商标、徽标或注册商标。在美国和其他国家。所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。

原文:Elastic Search 8.14: Faster and more cost-effective vector search, improved relevance with retrievers and reranking, RAG and developer tooling | Elastic Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/345247.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringFramework总结

一.SpringFramework介绍 (一)Spring 广义上的 Spring 泛指以 Spring Framework 为基础的 Spring 技术栈。 Spring 已经不再是一个单纯的应用框架&#xff0c;而是逐渐发展成为一个由多个不同子项目&#xff08;模块&#xff09;组成的成熟技术&#xff0c;例如 Spring Frame…

一分钟有60秒,这个有趣的原因你知道吗?

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

AI图书推荐:这就是ChatGPT

这本书《这就是ChatGPT》&#xff08;What Is ChatGPT Doing ... and Why Does It Work &#xff09;由Stephen Wolfram撰写 全书内容概要如下&#xff1a; **引言与预备知识** - 作者首先表达了对ChatGPT技术突破的兴奋之情&#xff0c;指出这不仅是技术的故事&#xff0c;也是…

Go select 语句使用场景

1. select介绍 select 是 Go 语言中的一种控制结构&#xff0c;用于在多个通信操作中选择一个可执行的操作。它可以协调多个 channel 的读写操作&#xff0c;使得我们能够在多个 channel 中进行非阻塞的数据传输、同步和控制。 基本语法&#xff1a; select {case communica…

单灯双控开关原理

什么是单灯双控&#xff1f;顾名思义&#xff0c;指的是一个灯具可以通过两个不同的开关或控制器进行控制。 例如客厅的主灯可能会设置成单灯双控&#xff0c;一个开关位于门口&#xff0c;另一个位于房间内的另一侧&#xff0c;这样无论你是从门口进入还是从房间内出来&#x…

多客陪玩系统-开源陪玩系统平台源码-支持游戏线上陪玩家政线下预约等多场景应用支持H5+小程序+APP

多客陪玩系统-开源陪玩系统平台源码-支持游戏线上陪玩家政按摩线下预约等多场景应用支持H5小程序APP 软件架构 前端&#xff1a;Uniapp-vue2.0 后端&#xff1a;Thinkphp6 前后端分离 前端支持&#xff1a; H5小程序双端APP&#xff08;安卓苹果&#xff09; 安装教程 【商业…

6月7号作业

1&#xff0c; 搭建一个货币的场景&#xff0c;创建一个名为 RMB 的类&#xff0c;该类具有整型私有成员变量 yuan&#xff08;元&#xff09;、jiao&#xff08;角&#xff09;和 fen&#xff08;分&#xff09;&#xff0c;并且具有以下功能&#xff1a; (1)重载算术运算符…

使用 GPT-4 创作高考作文 2024年

使用 GPT-4 创作高考作文 2024年 使用 GPT-4 创作高考作文&#xff1a;技术博客指南 &#x1f914;✨摘要引言正文内容&#xff08;详细介绍&#xff09; &#x1f4da;&#x1f4a1;什么是 GPT-4&#xff1f;高考作文题目分析 ✍️&#x1f9d0;新课标I卷 人类智慧的进步&…

什么是pump?pump跟单机器人是什么?

区块链pump&#xff08;拉盘&#xff09;是一种市场操纵策略&#xff0c;通常指在短时间内人为抬高某种加密货币的价格&#xff0c;从而吸引其他投资者购买&#xff0c;随后通过快速出售&#xff08;dump&#xff09;获利。这种策略通常由一群协调好的投资者或交易团体执行&…

HikariCP连接池初识

HikariCP的简单介绍 hikari-光&#xff0c;hikariCP取义&#xff1a;像光一样轻和快的Connetion Pool。这个几乎只用java写的中间件连接池&#xff0c;极其轻量并注重性能&#xff0c;HikariCP目前已是SpringBoot默认的连接池&#xff0c;伴随着SpringBoot和微服务的普及&…

【WP|9】深入解析WordPress [add_shortcode]函数

add_shortcode 是 WordPress 中一个非常强大的函数&#xff0c;用于创建自定义的短代码&#xff08;shortcodes&#xff09;。短代码是一种简洁的方式&#xff0c;允许用户在内容中插入动态的、可重用的功能。通过 add_shortcode&#xff0c;开发者可以定义自己的短代码&#x…

Linux基础指令(一)

前言 Linux基础指令主要学习&#xff1a;对目录、文件、压缩包、匹配查找&#xff0c;权限等操作 第一次接触ubuntu需要知道的基本知识 sudo passwd root 先给root用户设置密码 su root 切换到root用户 su zhangsan …

Sui Generis如何为艺术家弥合Web3的鸿沟

Sui Generis是一家于3月推出的NFT拍卖行&#xff0c;其联合创始人兼CEO Gab9说其愿景是——更好、更大、更强&#xff01; 表面上看&#xff0c;Sui Generis是备受欢迎的Tombheads NFT拍卖行的重新品牌化&#xff0c;该拍卖行今年早些时候从Fantom区块链迁移出来。但它于3月31…

音视频开发19 FFmpeg 视频解码- 将 h264 转化成 yuv

视频解码过程 视频解码过程如下图所示&#xff1a; ⼀般解出来的是420p FFmpeg流程 这里的流程是和音频的解码过程一样的&#xff0c;不同的只有在存储YUV数据的时候的形式 存储YUV 数据 如果知道YUV 数据的格式 前提&#xff1a;这里我们打开的h264文件&#xff0c;默认是YU…

搜索与图论:宽度优先搜索

搜索与图论&#xff1a;宽度优先搜索 题目描述参考代码 题目描述 输入样例 5 5 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0输出样例 8参考代码 #include <iostream> #include <algorithm> #include <cstring> using namespace std;const int N …

course-nlp——8-translation-transformer

本文参考自https://github.com/fastai/course-nlp。 注意力机制和 Transformer Nvidia AI 研究员 Chip Huyen 写了一篇很棒的文章《Top 8 trends from ICLR 2019》&#xff0c;其中的趋势之一是 RNN 正在失去研究人员的青睐。 这是有原因的&#xff0c;RNN 可能很麻烦&#…

course-nlp——5-nn-imdb

本文参考自https://github.com/fastai/course-nlp。这部分是fastai1.0版本的教程&#xff0c;由于现在fastai2.0重构的改变非常大&#xff0c;所以文中的很多api都变了&#xff0c;由于学习目的并不是熟练掌握fastai&#xff0c;因此这里就简单的存一下&#xff0c;本文是用IMD…

数据库 | 关系数据库设计

第七章 1.简述数据库的设计阶段&#xff1f;&#xff08;简要回答数据库设计步骤&#xff1f;&#xff09;&#xff08;&#xff08;数据库设计有哪几个阶段&#xff1f;&#xff09; 需求分析、概念结构设计、逻辑结构设计、物理结构设计、数据库的实施、数据库的运行和维护…

美团大规模KV存储挑战与架构实践--图文分析

美团大规模KV存储挑战与架构实践–图文分析 原作者&#xff1a;美团技术团队 原文链接&#xff1a;https://tech.meituan.com/2024/03/15/kv-squirrel-cellar.html 1 美团 KV 存储发展历程 第一代&#xff1a;使用Memcached 什么是一致性哈希&#xff1f; 哈希&#xff1a…

Elasticsearch 认证模拟题 - 17

这两道题目非常具有代表性&#xff0c;分别是跨集群复制和跨集群检索&#xff0c;需要相应的 许可 这里在虚拟机上搭建集群完成这两道题目&#xff0c;这里补充一下 elasticsearch 和 kibana 的配置文件 # elasticsearch.yml cluster.name: cluster2 node.name: cluster2-node…