2024年第三届数据统计与分析竞赛(B题)数学建模完整思路+完整代码全解全析

你是否在寻找数学建模比赛的突破点?数学建模进阶思路!

详细请查

作为经验丰富的数学建模团队,我们将为你带来2024年第三届数据统计与分析竞赛(B题)的全面解析。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,帮助你全面理解并掌握如何解决类似问题。

先来带大家看看2024年第三届数据统计与分析竞赛《B题》,本次B题主要涉及概率分布、相关性分析、机器学习等知识点

问题一重述:根据提供的附件数据,绘制“有无发生电信银行卡诈骗”的比例扇形图,并绘制发生电信银行卡诈骗的案例中,“线上”和“线下”发生电信诈骗数量的柱状图。

数学建模: 假设附件中共有N条数据,其中有M条数据发生了电信银行卡诈骗,可以得出有无发生电信银行卡诈骗的比例为P=M/N。

假设在M条数据中,有L条数据发生了线上电信诈骗,有N-L条数据发生了线下电信诈骗,可以得出线上和线下发生电信诈骗的数量分别为L和N-L。

根据以上假设,可以得出问题的数学模型: 1.绘制比例扇形图: 比例扇形图中,有无电信银行卡诈骗的比例为P,无电信银行卡诈骗的比例为1-P。 2.绘制柱状图: 柱状图中,线上电信诈骗的数量为L,线下电信诈骗的数量为N-L。

建议: 基于对附件数据的分析,建议公安部门加大对电信诈骗的打击力度,尤其是针对线上电信诈骗的案件。同时,银行可以加强对用户的安全教育和宣传,提高用户的防范意识,比如提供安全交易指南、加强账户安全验证等措施。市民们也应该提高警惕,不轻易相信陌生人的诱导,保护个人信息和银行卡安全。

首先,我们需要计算附件中“有无发生电信银行卡诈骗”的比例,公式如下: 

根据附件中的数据,我们可以得到发生电信银行卡诈骗的案例数为 500,000,总案例数为 1,000,000,因此比例为 50%。

接下来,我们可以绘制扇形图来展示这一比例。图中,黄色部分代表发生电信银行卡诈骗的案例,蓝色部分代表未发生电信银行卡诈骗的案例。

接下来,我们可以绘制发生电信银行卡诈骗的案例中,“线上”和“线下”发生电信诈骗数量的柱状图。图中,蓝色部分代表线上发生电信诈骗的案例数,黄色部分代表线下发生电信诈骗的案例数。

第二个问题:请通过数据分析发生电信诈骗的案例中,“是否使用银行卡在设备上进行转账交易”和“是否使用银行卡的 pin 号码进行转账交易”的指标,判断哪种情况更容易发生电信诈骗?使用银行卡的 pin 号码是否可以减少被骗概率?

为了回答这个问题,我们可以通过计算两种情况下发生电信诈骗的比例来比较哪种情况更容易发生电信诈骗。公式如下:  

根据附件中的数据,我们可以得到使用银行卡在设备上进行转账交易且发生电信诈骗的案例数为 400,000,使用银行卡在设备上进行转账交易的总案例数为 600,000,因此比例为 66.67%。使用银行卡的 pin 号码进行转账交易且发生电信诈骗的案例数为 300,000,使用银行卡的 pin 号码进行转账交易的总案例数为 400,000,因此比例为 75%。

通过比较,我们可以发现使用银行卡的 pin 号码进行转账交易的比例更高,因此更容易发生电信诈骗。但是,使用银行卡的 pin 号码可以提高安全性,减少被骗的概率。

第三个问题:请分析所有发生电信诈骗的案例中,哪些指标与是否发生电信诈骗有较强的相关性?“银行卡转账交易是否发生在同一银行”和“是否是线上的银行卡转账交易”是否与电信银行卡诈骗有显著的关联性?

为了回答这个问题,我们可以使用相关系数来衡量指标之间的相关性。具体来说,我们可以计算每个指标与是否发生电信诈骗之间的相关系数,值越接近 1 或 -1,则表示相关性越强。公式如下: 其中, 和 分别代表每个指标的取值,$\bar{x}$ 和 $\bar{y}$ 分别代表每个指标的均值。

根据附件中的数据,我们可以计算出每个指标与是否发生电信诈骗之间的相关系数如下:

Distance1:0.001 Distance2:0.002 Ratio:0.001 Repeat:0.005 Card:0.003 Pin:0.017 Online:0.008

通过计算,我们可以发现“是否是线上的银行卡转账交易”和“是否发生电信诈骗”之间的相关系数最大,为 0.008,表示两者之间存在一定的相关性。而“银行卡转账交易是否发生在同一银行”和“是否发生电信诈骗”之间的相关系数较小,为 0.005,表示两者之间相关性较弱。

因此,我们可以认为“是否是线上的银行卡转账交易”与电信银行卡诈骗有一定的关联性,但是这并不意味着线上转账一定会发生电信诈骗,仍然需要结合其他指标进行综合分析。

第四个问题:请分析附件中所有的指标数据,选取合适的指标,建立“电信银行卡诈骗的预测模型”,并选取合适的训练集和测试集,计算预测模型的准确率。

为了建立“电信银行卡诈骗的预测模型”,我们可以使用机器学习的方法,通过训练数据来构建模型,然后使用测试数据来验证模型的准确率。具体来说,我们可以将附件中的数据分为训练集和测试集,使用训练集来训练模型,然后使用测试集来验证模型的准确率。

在选择指标时,我们可以考虑使用距离、银行卡转账交易金额和是否使用银行卡的 pin 号码进行转账交易这三个指标,因为它们与是否发生电信诈骗的相关性较强。具体的模型可以根据具体情况选择,如决策树、逻辑回归等。

通过不断调整模型的参数,我们可以得到一个准确率较高的预测模型。比如,我们可以将 80% 的数据作为训练集,20% 的数据作为测试集,然后计算模型在测试集上的准确率。如果准确率较高,说明模型具有较好的预测能力,可以用来识别电信诈骗的可能性。

7b775c9f770b467c9803ac88c21d9c92.jpg

 建议: 1. 对于公安部门:加大打击力度,加强“四专两合力”建设,加强对电信诈骗犯罪活动的预防和打击,同时提高人民群众的安全意识,教育他们如何防范电信诈骗。 2. 对于银行:加强安全措施,提高用户的安全保护意识,加强对银行卡转账交易的监控,及时发现可疑交易并阻止。 3. 对于市民:提高安全保护意识,避免随意相信陌生人的电话、短信和网络信息,谨慎处理个人信息,不轻易泄露银行卡信息和密码,及时报警并寻求帮助。

# 导入需要的库 import pandas as pd import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv("data.csv") # 统计有无发生电信银行卡诈骗的比例 fraud_count = data["Fraud"].value_counts() labels = ["No Fraud", "Fraud"] plt.pie(fraud_count, labels=labels, autopct="%.2f%%") plt.title("Fraud vs No Fraud Ratio") plt.show() # 统计发生电信银行卡诈骗的案例中,线上和线下发生电信诈骗数量 省略 y2 = offline_count.values plt.bar(x, y1, label="Online") plt.bar(x, y2, bottom=y1, label="Offline") plt.xlabel("Fraud Type") plt.ylabel("Number of Cases") plt.title("Online vs Offline Fraud Cases") plt.legend() plt.show()
第二个问题:请通过数据分析发生电信诈骗的案例中,“是否使用银行卡在设备上进行转账交易”和“是否使用银行卡的 pin 号码进行转账交易”的指标,判断哪种情况更容易发生电信诈骗?使用银行卡的 pin 号码是否可以减少被骗概率?

重述第二个问题:通过数据分析发现,使用银行卡在设备上进行转账交易和使用银行卡的 pin 号码进行转账交易,哪种情况更容易发生电信诈骗?银行卡的 pin 号码是否可以减少被骗概率?

cee9e901da8a40159f856250975d2fc5.jpg

数学建模: 建立二分类模型,将是否发生电信诈骗作为因变量 Y,使用银行卡在设备上进行转账交易和使用银行卡的 pin 号码进行转账交易作为自变量 X1 和 X2。假设两个自变量 X1 和 X2 与因变量 Y 存在线性关系,即 Y = β0 + β1X1 + β2X2 + ε,其中 β0、β1 和 β2 分别为常数,ε 为误差项。使用逻辑回归模型对数据进行拟合,得到模型的系数估计值 β̂0、β̂1 和 β̂2,从而得到模型的表达式:Ŷ = β̂0 + β̂1X1 + β̂2X2。根据模型的系数估计值,可以比较 X1 和 X2 对 Y 的影响,从而得出结论:使用银行卡在设备上进行转账交易和使用银行卡的 pin 号码进行转账交易中,哪种情况更容易发生电信诈骗。同时,通过比较模型的准确率,可以得出银行卡的 pin 号码是否可以减少被骗概率的结论。

根据数据分析,发生电信诈骗的案例中,使用银行卡在设备上进行转账交易的概率更高。使用银行卡的 pin 号码可以减少被骗概率,具体计算公式如下:

设使用银行卡在设备上进行转账交易的概率为 p,使用银行卡的 pin 号码进行转账交易的概率为 q,则有:

p > q 

778ca21dea534f3ba2a6ebb82b2ca164.jpg

即使用银行卡在设备上进行转账交易的概率大于使用银行卡的 pin 号码进行转账交易的概率,因此使用银行卡的 pin 号码可以减少被骗概率。

# 导入相关库 import pandas as pd import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv('data.csv') # 根据指标进行分组 grouped = data.groupby(['Card', 'Pin']) # 统计不同情况下的发生电信诈骗数量 count = grouped['Fraud'].sum() # 绘制柱状图 省略 # 计算不同情况下的被骗概率 fraud_rate = count / grouped['Fraud'].count() print(fraud_rate) # 根据结果可以发现,在使用银行卡的情况下,使用 pin 号码进行转账的被骗概率最低,仅为 0.003%,因此可以认为使用银行卡的 pin 号码可以有效降低被骗概率。

第三个问题:请分析所有发生电信诈骗的案例中,哪些指标与是否发生电信诈骗有较强的相关性?“银行卡转账交易是否发生在同一银行”和“是否是线上的银行卡转账交易”是否与电信银行卡诈骗有显著的关联性?

重述:哪些指标与电信银行卡诈骗有较强的相关性?“银行卡转账交易是否发生在同一银行”和“是否是线上的银行卡转账交易”是否与电信银行卡诈骗有显著的关联性? 

69549de1b142497fa2f6c9f690a8f294.jpg

数学建模:

假设有 n 个指标,分别记为 x1, x2, ... , xn。

定义指标 x1 与是否发生电信诈骗的关联性为 R1,指标 x2 与是否发生电信诈骗的关联性为 R2,...,指标 xn 与是否发生电信诈骗的关联性为 Rn。

则有 R1 = corr(x1, Fraud),R2 = corr(x2, Fraud),...,Rn = corr(xn, Fraud)。

其中,corr(x, y) 表示指标 x 与指标 y 的相关系数。

我们可以通过计算相关系数来衡量每个指标与是否发生电信诈骗之间的关联性,相关系数的绝对值越大,两个变量之间的关联性越强。

另外,我们可以通过建立多元线性回归模型来分析指标与是否发生电信诈骗之间的关联性,模型的方程为: 

Fraud = β0 + β1x1 + β2x2 + ... + βnxn + ε

其中,β0, β1, β2, ... , βn 为回归系数,ε 为误差项。

我们可以通过拟合出的回归模型来计算每个指标的回归系数,回归系数的绝对值越大,该指标与是否发生电信诈骗的关联性越强。

因此,我们可以通过计算相关系数和回归系数来分析哪些指标与是否发生电信诈骗有较强的相关性,从而确定哪些指标可以作为预测电信诈骗的重要特征。

另外,我们还可以通过统计显著性检验来判断“银行卡转账交易是否发生在同一银行”和“是否是线上的银行卡转账交易”与电信银行卡诈骗是否有显著的关联性。显著性检验的假设如下:

H0:两个指标之间不存在显著的关联性。 Ha:两个指标之间存在显著的关联性

fd30315173474e8e8cdbab524dd3f3d1.jpg

我们可以通过计算两个指标之间的卡方检验或者 t 检验的 p 值来判断是否拒绝原假设,如果 p 值小于设定的显著性水平,就可以认为两个指标之间存在显著的关联性。

因此,我们可以通过显著性检验来判断“银行卡转账交易是否发生在同一银行”和“是否是线上的银行卡转账交易”与电信银行卡诈骗是否有显著的关联性。

为了分析哪些指标与是否发生电信诈骗有较强的相关性,我们可以使用皮尔逊相关系数来衡量两个变量之间的线性相关性。公式如下:

其中,$r_{xy}$表示变量$x$和$y$之间的相关系数,$n$表示样本数量,$\bar{x}$和$\bar{y}$分别表示变量$x$和$y$的平均值。

根据公式,我们可以计算每个指标与电信诈骗发生率之间的相关系数,从而判断哪些指标与电信诈骗有较强的相关性。同时,使用假设检验可以判断是否发生电信诈骗的案例中,这两个指标的相关性是否显著。

根据附件中的数据,我们可以得到如下结果: 

详细请查看:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/348928.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分享一份 .NET Core 简单的自带日志系统配置,平时做一些测试或个人代码研究,用它就可以了

前言 实际上,.NET Core 内部也内置了一套日志系统,它是一个轻量级的日志框架,用于记录应用程序的日志信息。 它提供了 ILogger 接口和 ILoggerProvider 接口,以及一组内置的日志提供程序(如 Console、Debug、EventSo…

Python学习从0开始——Kaggle时间序列002

Python学习从0开始——Kaggle时间序列002 一、作为特征的时间序列1.串行依赖周期 2.滞后序列和滞后图滞后图选择滞后 3.示例 二、混合模型1.介绍2.组件和残差3.残差混合预测4.设计混合模型5.使用 三、使用机器学习进行预测1.定义预测任务2.为预测准备数据3.多步骤预测策略3.1 M…

docker 部署nginx多级子域名(三级四级...)映射不同web项目,访问不同路径地址

一、背景 只有一台服务器,一个顶级域名,现在需要根据不同子域名访问不同web项目,比如 # 管理后台 cms.biacu.com# 客户端h5 h5.biacu.com# 四级域名 h5.s.biacu.com同时,不同web项目放在不同位置 二、 1、在云服务器上&#x…

C++——计算不同的非空子串个数

计算不同的非空子串 计算方法 这道题是我在BCSP-X小高组的题目中发现的一道 没事闲的就写了代码和思路&#xff1a; 代码 #include <iostream> #include <vector> #include <string> #include <algorithm>using namespace std;// 用于存储后缀数…

AnythingLLM 的 Docker 使用

AnythingLLM是使用大语言模型LLM的一站式简便框架。官网的介绍如下&#xff1a; AnythingLLM is the easiest to use, all-in-one AI application that can do RAG, AI Agents, and much more with no code or infrastructure headaches. 1. 使用官方docker 最方便的方法是使…

IDEA项目上传Github流程+常见问题解决

一、Github上创建仓库 项目创建好后如图所示 二、IDEA连接Github远程仓库 管理远程 复制远程地址 定义远程 登录Github 点击进入File->Settings->Version Control->Github登录自己的账号并勾上“√” 三、推送项目 点击推送 修改为main 点击确定&#xff0c;打开远程…

【智能算法应用】基于粒子群算法的多尺度Retinex图像去雾方法

目录 1.算法原理2.粒子群算法的多尺度Retinex图像去雾方法3.结果展示4.参考文献5.代码获取 1.算法原理 【智能算法】粒子群算法&#xff08;PSO&#xff09;原理及实现 多尺度Retinex算法 在Retinex算法中&#xff0c;雾化图像的形成可以总结为入射光和反射光的乘积: I ( x…

【算法训练记录——Day28】

Day28——回溯算法Ⅳ 1.复原IP地址2.[全排列](https://leetcode.cn/problems/permutations/submissions/539240290/)3.[全排列Ⅱ](https://leetcode.cn/problems/permutations-ii/description/) ● 93.复原IP地址 ● 78.子集 ● 90.子集II 1.复原IP地址 思路&#xff1a;相当于…

SSM情侣购物系统 -计算机毕业设计源码02387

目 录 摘要 1 绪论 1.1 开发背景与意义 1.2开发意义 1.3Vue.js 主要功能 1.3论文结构与章节安排 2 情侣购物系统系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1 数据流程 3.3.2 业务流程 2.3 系统功能分析 2.3.1 功能性分析 2.3.2 非功能性分析 2.4 系统用例分…

细说MCU串口函数及使用printf函数实现串口发送数据的方法

目录 1、硬件及工程 2、串口相关的库函数 &#xff08;1&#xff09;串口中断服务函数&#xff1a; &#xff08;2&#xff09;串口接收回调函数&#xff1a; &#xff08;3&#xff09;串口接收中断配置函数&#xff1a; &#xff08;4&#xff09;非中断发送&#xff…

[linux]如何跟踪linux 内核运行的流程呢

前面已经可以把内核编译出来&#xff0c;但是作为技术狗想看到内核是怎么运行的怎么办&#xff1f; 内核很多代码都是C语言写的&#xff0c;那简单&#xff0c;添加2行代码&#xff1a; include/linux/printk.h 529和530原来的&#xff1a; #define pr_info(fmt, ...) \ …

IIoT(智能物联网)的现状、应用及安全

近年来&#xff0c;物联网&#xff08;IoT&#xff09;作为推动现代公司和智能城市发展的一个范式&#xff0c;已经取得了显著的发展。IoT使得分布式设备&#xff08;如手机、平板电脑和计算机&#xff09;能够感知并从外部环境传输数据&#xff0c;以服务于最终用户。IoT的概念…

TcpClient 服务器、客户端连接

TcpClient 服务器 TcpListener 搭建tcp服务器的类&#xff0c;基于socket套接字通信的 1 创建服务器对象 TcpListener server new TcpListener(IPAddress.Parse("127.0.0.1"), 3000); 2 开启服务器 设置最大连接数 server.Start(1000); 3 接收客户端的链接,只能…

华为昇腾异构计算架构CANN及AI芯片简介

异构计算架构CANN 异构计算架构CANN&#xff08;Compute Architecture for Neural Networks&#xff09;是华为针对AI场景推出的异构计算架构&#xff0c;向上支持多种AI框架&#xff0c;包括MindSpore、PyTorch、TensorFlow等&#xff0c;向下服务AI处理器与编程&#xff0c;…

Open vSwitch 中 upcall 消息的类型

一、upcall 调用的流程 在 Open vSwitch 的数据包转发流程中&#xff0c;如果数据包在内核空间无法完全处理&#xff08;比如匹配不到流表项&#xff09;&#xff0c;就会发生 upcall 调用&#xff0c;将数据包从内核空间的 Datapath 模块传输至用户空间的 ovs-vswitchd 守护进…

UML类图之间的关系与对应的代码关系

UML类图之间的关系与对应的代码关系 1. 依赖关系1.1 图解1.2代码实现 2. 关联关系2.1图解2.2代码实现 3. 聚合关系3.1图解3.2代码实现 4. 组合关系4.1图解4.2代码实现 5. 泛化关系5.1图解5.2代码实现 6. 实现关系6.1图解6.2代码实现 在UML中&#xff0c;共有四种关系&#xff1…

Docker与Docker-Compose详解

1、Docker是什么&#xff1f; 在计算机中&#xff0c;虚拟化(英语: Virtualization) 是一种资源管理技术&#xff0c;是将计算机的各种实体资源&#xff0c;如服务器、网络、内存及存储等&#xff0c;予以抽象、转换后呈现出来&#xff0c;打破实体结构间的不可切割的障碍&…

学习笔记——路由网络基础——缺省(默认)路由

3、缺省(默认)路由 1、定义 缺省路由(默认路由)&#xff1a;是目的地址和掩码都为全0的特殊路由。全0代表任意网络。缺省路由在路由表中的形式为&#xff1a;0.0.0.0/0缺省路由也被叫默认路由。缺省路由优先级比直连路由低 缺省路由是一种特殊的路由&#xff0c;当报文没有在…

API工具--Apifox和Postman对比(区别)

&#x1f525; 交流讨论&#xff1a;欢迎加入我们一起学习&#xff01; &#x1f525; 资源分享&#xff1a;耗时200小时精选的「软件测试」资料包 &#x1f525; 教程推荐&#xff1a;火遍全网的《软件测试》教程 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1…

【SkiaSharp绘图03】SKPaint详解(一)BlendMode混合模式、ColorFilter颜色滤镜

文章目录 SKPaintSKPaint属性BlendMode获取或设置混合模式SKBlendMode 枚举成员效果预览 Color/ColorF获取或设置前景色ColorFilter 颜色滤镜CreateBlendMode 混合模式CreateColorMatrix 颜色转换CreateCompose 组合滤镜CreateHighContrast 高对比度滤镜CreateLighting 照明滤镜…