论文阅读:H-ViT,一种用于医学图像配准的层级化ViT

来自CVPR的一篇文章,https://openaccess.thecvf.com/content/CVPR2024/papers/Ghahremani_H-ViT_A_Hierarchical_Vision_Transformer_for_Deformable_Image_Registration_CVPR_2024_paper.pdf

用CNN+Transformer混合模型做图像配准。可变形图像配准是一种在相同视场内比较或整合单模态或多模态视觉数据的技术,它旨在找到两幅图像之间的非线性映射关系。

1,模型结构

首先,使用类似特征金字塔网络(FPN)的CNN作为主干网络,用于从输入图像中提取多尺度的特征图。顶层的Sh个CNN特征被用来生成Transformer特征。这些特征首先会被映射成通道数量为fe,然后做embedding。然后输入双注意力模块。双注意力模块会生成变形场,最后网格采样器根据变形场生成目标图像。

2,双注意力模块

双注意力模块由自注意力和交叉注意力组成,

如图展示了双注意力模块在不同尺度上应用自注意力和交叉注意力的过程。交叉注意力和自注意力都是QKV结构。

其中第一部分是自注意力,QKV均来自同一尺度特征。下面两个部分是交叉注意力,Q和KV来自不同尺度的特征。

3,损失函数

本文模型使用的损失函数包含两个部分:相似性损失和平滑性损失。

相似性损失的公式如下:

平滑性损失的作用是为了防止产生不连续的变形场,公式如下:

平滑性损失计算的是变形场的空间梯度的L2范数,这样可以更强烈地惩罚那些梯度较大的区域。

整体损失函数公式如下:

其中λ是预定义的系数。

4,变形场和网格采样器

4.1 变形场

变形场(Deformation Field)是图像配准中的一个重要概念,是一个从移动图像(源图像)到目标图像的映射。它定义了移动图像中每个点在目标图像空间中的新位置。数学上,变形场可以表示为一个向量场,其中每个向量指向源图像中相应点在目标图像中的位置偏移。

4.2网格采样器

它的作用是根据一个给定的变形场来重新采样图像的像素网格,从而实现图像的变形或映射。变形场通常是一个向量场,网格采样器根据变形场中的向量,计算出原始图像中每个像素点的新位置。如果新位置是子像素位置,则需要使用插值方法来计算这个新位置的像素值。

5,实验

5.1 使用的度量

为了量化模型的性能,使用了多种度量标准,如Dice分数、HD95、SDlogJ等。

其中,HD95:是Hausdorff距离的95%分位数,意味着在95%的情况下,配准误差不会超过这个值。这是一种衡量两组几何对象之间相似度的方法,常用于评估图像配准算法的性能。Hausdorff距离是度量两个点集A和B之间最大距离的度量。计算公式为:H(A,B) = max(h(A,B), h(B,A)),其中h(A,B)表示集合A中的点到集合B中最近点的最大距离,h(B,A)表示集合B中的点到集合A中最近点的最大距离。

SDlogJ:Standard Deviation of the Logarithm of the Jacobian Determinant,是一个统计量,用于度量变形场中雅可比行列式对数值的标准差。雅可比行列式描述了一个点从一个坐标系统映射到另一个坐标系统时体积变化的比率。简单来说,它反映了变换过程中局部体积的膨胀或收缩情况。由于雅可比行列式值可能非常大或非常小,为了方便数学处理和比较,通常会取其对数值。这样做可以使得数据更加平稳。

5.2 实验结果

实验使用了五个公开可用的T1 MRI数据库,包括OASIS、IXI、ADNI、LPBA和Mindboggle。对比了VoxelMorph、MIDIR、CycleMorph、ViT-V-Net和TransMorph等基准方法。实验表格比较多那就不贴了,总之就是超越了这些方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/349424.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于单片机的机械手臂控制系统设计

摘 要: 应用单片机 、 Arduino 及机械臂的有关知识,设计一款基于单片机的六自由度机械手臂,并详述其控制系统的软、 硬件设计 。 该机械手臂能够模仿人的上肢完成简单的动作,因此在实验教学演示平台 、 生产或生活中都极具应用价…

Dubbo 3.x源码(20)—Dubbo服务引用源码(3)

基于Dubbo 3.1,详细介绍了Dubbo服务的发布与引用的源码。 此前我们学习了调用createProxy方法,根据服务引用参数map创建服务接口代理引用对象的整体流程,我们知道会调用createInvokerForRemote方法创建远程引用Invoker,这是Dubbo …

Linux文件系统

目录 1.磁盘的结构 1.1磁盘的物理结构 1.2 磁盘的存储结构 1.3 磁盘的逻辑结构 2.文件系统 在上一篇文章基础IO中,我们主要是讲了被打开的文件与进程的关系,以及操作系统是如何管理这些被打开的文件的,但是磁盘有这么多文件,被打…

QT--DAY1

不使用图形化界面实现一个登陆界面 #include "widget.h"Widget::Widget(QWidget *parent): QWidget(parent) {//设置窗口标题this->setWindowTitle("登录界面");//设置窗口大小this->resize(535,410);//固定窗口大小this->setFixedSize(535,410)…

windows 环境下使用git命令导出差异化文件及目录

一、找出差异化的版本(再此使用idea的show history) 找到两个提交记录的id 分别为: 二、使用git bash执行命令(主要使用 tar命令压缩文件) 输出结果:

上心师傅的思路分享(三)--Nacos渗透

目录 1. 前言 2. Nacos 2.1 Nacos介绍 2.2 鹰图语法 2.3 fofa语法 2.3 漏洞列表 未授权API接口漏洞 3 环境搭建 3.1 方式一: 3.2 方式二: 3.3 访问方式 4. 工具监测 5. 漏洞复现 5.1 弱口令 5.2 未授权接口 5.3.1 用户信息 API 5.3.2 集群信息 API 5.3.3 配置…

kubernetes(k8s)集群部署(2)

目录 k8s集群类型 k8s集群规划: 1.基础环境准备: (1)保证可以连接外网 (2)关闭禁用防火墙和selinux (3)同步阿里云服务器时间(达到集群之间时间同步) &…

pytest并发执行时token异常处理问题

接前面加入钩子函数处理token复用的问题,只保证了用例的串联执行,我的部分测试用例中接入了通义千问的部分接口生成测试数据,七八个场景跑完差不多快要10分钟。考虑使用并发执行。 http://t.csdnimg.cn/ACexL 使用多线程和不使用耗时差距很大…

HyperBDR新版本上线,自动化容灾兼容再升级!

本次HyperBDR v5.5.0版本新增完成HCS(Huawei Cloud Stack)8.3.x和HCSO(Huawei Cloud Stack Online)自动化对接,另外还突破性完成了Oracle云(块存储模式)的自动化对接。 HyperBDR,云原生业务级别容灾工具。支…

Unity资源 之 最受欢迎的三消游戏开发包 - Bubble Shooter Kit 【免费领取】

三消游戏开发包 - Bubble Shooter Kit 免费领取 前言资源包内容领取兑换码 前言 如果你是一名 Unity 游戏开发者,并且正在寻找一种快速、简单的方式来创建自己的三消游戏,那么 Bubble Shooter Kit 就是你所需要的。 资源包内容 Bubble Shooter Kit 是…

代码随想录算法训练营第36期 last day

最后一次更新&#xff0c;之后去复习专业课和简历 583两个字符串的删除操作 自己做出来了&#xff1a; Code: class Solution {public://找到公共子序列的最大长度dp 最小步数串1.size-dp串2.size-dp int minDistance(string word1, string word2) { vector<v…

用智能插件(Fitten Code: Faster and Better AI Assistant)再次修改vue3 <script setup>留言板

<template><div><button class"openForm" click"openForm" v-if"!formVisible">编辑</button><button click"closeForm" v-if"formVisible">取消编辑</button><hr /><formv-i…

基于梯度下降的多元线性回归原理

为了展示多元线性回归的迭代过程&#xff0c;我们可以使用梯度下降算法手动实现多元线性回归。梯度下降是一种迭代优化算法&#xff0c;用于最小化损失函数。 我们将以下步骤进行手动实现&#xff1a; 初始化回归系数。计算预测值和损失函数。计算梯度。更新回归系数。重复步…

高分论文密码---大尺度空间模拟预测与数字制图

大尺度空间模拟预测和数字制图技术和不确定性分析广泛应用于高分SCI论文之中&#xff0c;号称高分论文密码。大尺度模拟技术可以从不同时空尺度阐明农业生态环境领域的内在机理和时空变化规律&#xff0c;又可以为复杂的机理过程模型大尺度模拟提供技术基础。我们将结合一些经典…

制造业几大系统(MES/WMS/QMS/ERP)的集成

制造业的几大系统包括MES&#xff08;制造执行系统&#xff09;、WMS&#xff08;仓库管理系统&#xff09;、QMS&#xff08;质量管理系统&#xff09;和ERP&#xff08;企业资源计划&#xff09;系统。这些系统在制造业中扮演着不同的角色&#xff0c;可以通过集成实现更高效…

Kafka高频面试题整理

文章目录 1、什么是Kafka?2、kafka基本概念3、工作流程4、Kafka的数据模型与消息存储机制1)索引文件2)数据文件 5、ACKS 机制6、生产者重试机制:7、kafka是pull还是push8、kafka高性能高吞吐的原因1&#xff09;磁盘顺序读写&#xff1a;保证了消息的堆积2&#xff09;零拷贝机…

SqlSugar有实体CURD应用-C#

本文所述开发环境&#xff1a;.C#、NET8、Visual Studio2022 SqlSugar有实体查询数据表 首先根据《SqlSugar使用DbFirst对象根据数据库表结构创建实体类-C#》中的描述的表结构创建所有表的实体类如下&#xff1a; 表名创建的实体类名tb_studentStudenttb_teacherTeachertb_c…

linux的UDP广播测试:C语言代码

测试代码 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <netdb.h>#…

MyEclipse新手使用介绍

目录 1.MyEclipse诞生背景 2.作用 3.版本历史 4.优缺点 5.应用场景 6.如何使用 6.1.下载与安装 6.2.MyEclipse 菜单及其菜单项 7.创建和发布一个 Java 程序 7.1.创建 Java 程序 7.2.发布 Java 程序 8.示例 8.1. Hello World 示例 8.2. 简单Spring Boot 应用 8.3…

kettle从入门到精通 第六十九课 ETL之kettle kettle cdc mysql,轻松实现增量同步

1、之前kettle cdc mysql的时候使用的方案是canalkafkakettle&#xff0c;今天我们一起学习下使用kettle的插件Debezium直接cdc mysql。 注&#xff1a;CDC (Change Data Capture) 是一种技术&#xff0c;用于捕获和同步数据库中的更改。 1&#xff09;Debezium步骤解析mysql b…