生命在于学习——Python人工智能原理(3.3)

在这里插入图片描述

三、深度学习

4、激活函数

激活函数的主要作用是对神经元获得的输入进行非线性变换,以此反映神经元的非线性特性。常见的激活函数有线性激活函数、符号激活函数、Sigmod激活函数、双曲正切激活函数、高斯激活函数、ReLU激活函数

(1)线性激活函数

F(x)=kx+c,其中k和c是常量、线性函数常用在线性神经网络中。

(2)符号激活函数

在这里插入图片描述

(3)Sigmod激活函数

Sigmod函数又称为S形函数,是最为常见的激活函数:
在这里插入图片描述其图像如下
在这里插入图片描述

(4)双曲正切激活函数

在这里插入图片描述

图像如下所示:
在这里插入图片描述

(5)高斯激活函数

在这里插入图片描述

(6)ReLU激活函数

在这里插入图片描述

也可以表示为F(x)=max(0,x),图像如下图所示:

在这里插入图片描述
在神经网络中,ReLU激活函数得到广泛应用,尤其在卷积神经网络中,往往不选择Sigmod或Tanh而选择ReLU,原因主要有以下几点:
a、Sigmod函数求导涉及指数,计算复杂,ReLU代价小,计算速度快。
b、Sigmod函数导数最大值为1/4,链式求导会导致梯度越来越小,训练深度神经网络容易导致梯度消失,但是ReLU函数的导数为1,不会出现梯度消失。
c、有研究表明,人脑在工作时大概只有5%的神经元被激活,而Sigmod函数激活比例是50%,人工神经网络理想状态下激活率为15%-30%,ReLU函数在小于0时完全不激活,可以适应理想网络的激活率要求。

5、梯度下降法

梯度下降法是神经网络模型训练中最常用的优化算法之一,将其应用于寻找损失函数或代价函数的极值点。
常见的梯度下降法有批量下降法、随机梯度下降法和小批量梯度下降法,一般采用小批量梯度下降法。

(1)批量梯度下降法

此方法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。
优点:
a、每次更新使用全部样本,能更准确的朝向极值所在的方向,如果目标函数是凸函数,一定能收敛到全局最小值。
b、它对梯度的无偏估计,样例越多,估计越准确。
c、以此迭代时对所有样本进行计算,可以利用向量化操作实现并行。
缺点:
a、遍历计算所有样本不仅耗时还消耗大量资源。
b、每次更新遍历所有样本,有一些样本对参数更新价值不大。
c、如果是非凸函数,可能会陷入局部最小值。
迭代曲线如下:
在这里插入图片描述

(2)随机梯度下降

每次迭代时只使用一个样本对参数进行更新。
优点:
a、每次只计算一个样本,更新速度大大加快。
b、在学习过程中加入了噪声和随机性,提高了泛化误差。
c、对于非凸函数,它的随机性有助于逃离某些不理想的局部最小值,获得全局最优解。
缺点:
a、更新所有样本需要大量时间。
b、学习过程波动较大。
迭代曲线如下:
在这里插入图片描述

6、交叉熵损失函数

神经网络中分类问题较常使用交叉熵作为损失函数,二分类问题中公式如下,y*表示为真实标签,y表示预测标签:
在这里插入图片描述

多分类问题中公式可以写成下面形式:
在这里插入图片描述

二分类的交叉熵python实现如下:
def binary_crossentropy(t,o):
#y_true是真实标签,y_pred是预测值
return -(y_true * np.log(y_pred)+(1-y_true)*np.log(1-y_pred))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/349619.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go Module详解

文章目录 基本介绍相关环境变量Go Module的使用初始化项目(go mod init)管理依赖项(go mod edit)获取依赖项(go mod download)整理依赖项(go mod tidy)导入vendor目录(go…

Zynq学习笔记--AXI4-Stream到视频输出IP是如何工作的?

目录 1. 简介 2. 原理详解 2.1 示例工程 2.2 AXI4-Stream to Video Out 3. Master/Slave Timing Mode 3.1 Slave Timing Mode 3.2 Master Timing Mode 4. 总结 1. 简介 本文主要介绍了 AXI4-Stream 到视频输出 的内容。其中,示例工程展示了一个具体的设计&…

后端项目实战--瑞吉外卖项目软件说明书

瑞吉外卖项目软件说明书 一、项目概述 瑞吉外卖项目是一个外卖服务平台,用户可以通过该平台浏览餐厅菜单、下单、支付以及追踪订单状态。产品原型就是一款产品成型之前的一个简单的框架,就是将页面的排版布局展现出来,使产品得初步构思有一…

【 EI会议 | 西南大学主办 | 往届均已实现检索】第三届神经形态计算国际会议(ICNC 2024)

第三届神经形态计算国际会议(ICNC 2024) 2024 3rd International Conference on Neuromorphic Computing (ICNC 2024) 一、重要信息 大会官网:www.ic-nc.org(点击投稿/参会/了解会议详情) 会议时间:2024年12月13-15…

OpenAI函数调用:使用Assistants API函数工具的一个示例

Are you looking to expand GPTs capabilities? Check out this tutorial for a complete example of an AI Assistant that can send emails whenever we ask it to. 您是否希望扩展GPT的功能?查看这个教程,它提供了一个完整的示例,展示了…

探索智慧农业系统架构的设计与应用

随着科技的不断进步和农业现代化的推进,智慧农业正逐渐成为农业发展的重要趋势。智慧农业系统架构的设计与应用,将农业生产与信息技术相结合,为农业生产提供了新的思路和解决方案。本文将深入探讨智慧农业系统架构的设计与应用,从…

遥控玩具车电机驱动应用中的双H桥驱动芯片

遥控玩具车的基本工作原理是通过无线电遥控器发送信号,这些信号被玩具车内的接收器接收并解码,从而控制玩具车的运行。根据车身外型的不同,可以分为:普通的私家房车、越野车、货柜车、翻斗车等等。遥控器的操作,如前进…

NG32031单片机串口初始化

目录 1. 串口基础 2. 串口配置步骤 3. N32G031串口初始化示例 3.1开启时钟 3.2 配置GPIO 3.3 配置USART 3.4 使能中断(如果需要) 3.5. 示例代码 4. 调试和验证 5. 注意事项 6. 额外功能 NG32G031单片机的串口(UART)通常…

鸿蒙轻内核M核源码分析系列二十 Newlib C

LiteOS-M内核LibC实现有2种,可以根据需求进行二选一,分别是musl libC和newlibc。本文先学习下Newlib C的实现代码。文中所涉及的源码,均可以在开源站点https://gitee.com/openharmony/kernel_liteos_m 获取。 使用Musl C库的时候&#xff0c…

c++实战知识点

c实战知识点 一、概述1.数据2.C11的原始字面量3.数据类型的别名4.const修饰指针5.void关键字6.内存模型7.二级指针8.函数指针和回调函数9.数组10.C风格字符串11.二维数组用于函数的参数行指针(数组指针) 12.引用引用与const 13.各种形参的使用场景14.重载…

MySQL中的正排/倒排索引和DoubleWriteBuffer

正排/倒排索引 正排索引 文档1:词条A,词条B,词条C 文档2:词条A,词条D 文档3:词条B,词条C,词条E正排表是以文档的ID为关键字,表中记录文档中的每个字的位置信息&#xff…

python中的turtle

turtle个别指令 初始箭头默认指向为东(右) 往前(右)三个格:turtle.forward(3) 往后(左)三个格:turtle.backward(3) 往左转90度:turtle.left(90) 往右转90度&#xf…

现代X86汇编-C和ASM混合编程举例

端午假期安装好了vs c2022,并写了个简单的汇编代码,证明MASM真的可以运行。今天需要搞一个实实在在的C和ASM混合编程的例子,因为用纯汇编的求伯君写WPS的时代一去不复返了。个别关键函数用汇编,充分发挥CPU的特色功能,偶尔还是需要…

关于RDMA传输的基本流量控制

Basic flow control for RDMA transfers | The Geek in the Corner (wordpress.com) 名词解释 IB : InfiniBand的缩写,指的就是InfiniBand技术。 MAD : Management Datagram的缩写。MAD是InfiniBand架构中用于设备管理和配置的一种特殊消息…

用数据说话,效果好上一万倍,不是空口说白话的“好很多”

作为一名大数据开发者,我深知数据的有很大的魔力(我这句话就没用数据,听上去很无力)。数据不仅仅是数字和图表,它还能赋予我们强大的说服力和权威感。让我给你详细讲讲数据如何让理论插上翅膀。 目录 数据的“靠谱”…

关于dwarf 中 DW_AT_data_member_location 的理解

1、用python elftool解析结构体的时候,成员偏移量存在DW_AT_data_member_location字段解析;此字段是可变长的(uleb128编码); 第一个字节是操作码 后续是偏移量 uleb128编码,正如其名,是小端结尾…

【权威出版/投稿优惠】2024年智慧城市与信息化教育国际会议(SCIE 2024)

2024 International Conference on Smart Cities and Information Education 2024年智慧城市与信息化教育国际会议 【会议信息】 会议简称:SCIE 2024 大会时间:点击查看 大会地点:中国北京 会议官网:www.iacscie.com 会议邮箱&am…

BIO、NIO编程与直接内存、零拷贝

Socket Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口,其实就是一个门面模式。 本质上就是操作系统提供的一系列的API 网络通信编程基本常识 服务端、客户端、通信编程关注的三件事 连接(客户端连接服务器,服务…

Python自动化

python操作excel # 安装第三个库 cmd -> pip install xlrb 出现success即安装成功 # 导入库函数 import xlrb # 打开的文件保存为excel文档对象 xlsx xlrb.open_workbook("文件位置") # C:\Users\Adminstator\Desktop\学生版.xlsx # 操作工作簿里的工作表 # 1.…

提升你的编程体验:自定义 PyCharm 背景图片

首先,打开 PyCharm 的设置菜单,点击菜单栏中的 File > Settings 来访问设置,也可以通过快捷键 CtrlAItS 打开设置。 然后点击Appearance & Behavior > Appearance。 找到Background image...左键双击进入。 Image:传入自己需要设置…