ROS机器人小车建模仿真与SLAM

文章目录

  • 一、URDF
  • 二、创建小车模型
    • 1.创建功能包
    • 2.导入依赖
    • 3.创建urdf,launch文件:
    • 4.可视化
  • 三、添加雷达
    • 1.xacro文件
    • 2.集成和修改launch
    • 3.添加摄像头和雷达
  • 三.GAZEBO仿真
  • 四、orbslam2+kitti
    • 1.下载
    • 2.安装编译ORB_SLAM2
    • 3.运行Kitee数据集

一、URDF

​ URDF,即统一机器人描述格式(Unified Robot Description Format),是一种用于描述机器人模型的XML文件格式。URDF文件包含了机器人的物理和关节属性,使得机器人可以在仿真环境中被准确地表示和模拟。URDF是ROS(机器人操作系统)中广泛使用的一种格式,但它也可以独立于ROS使用。

URDF文件的主要组成部分包括:

  • 机器人(Robot):定义了机器人的根元素,包含了机器人的所有链接(links)和关节(joints)。
  • 链接(Link):代表机器人的一个物理部分,可以是机器人的手臂、腿部或任何其他部分。每个链接都有其几何形状、质量、尺寸和视觉/碰撞属性。
  • 关节(Joint):定义了链接之间的连接方式,可以是旋转关节(revolute)、滑动关节(prismatic)或其他类型。关节定义了链接之间的相对运动。
  • 材料(Material):定义了链接的视觉属性,如颜色、纹理等。
  • 传感器(Sensor):可以附加到链接上,用于在仿真中模拟传感器的功能。
  • 插件(Plugin):允许URDF文件包含自定义的脚本或行为。

URDF文件使得开发者能够在不同的仿真环境中重用机器人模型,同时也方便了机器人设计和仿真的交流。URDF文件可以被转换成其他格式,以适应不同的仿真软件或机器人控制系统。

二、创建小车模型

1.创建功能包

mkdir -p catkin_ws/src
cd catkin_ws/src
catkin_init_workspace

2.导入依赖

catkin_create_pkg jubot_demo urdf xacro 
cd jubot_demo/
mkdir urdf
mkdir launch
mkdir meshes
mkdir config

在这里插入图片描述

3.创建urdf,launch文件:

<launch><!-- 将 urdf 文件内容设置进参数服务器 --><param name="robot_description" textfile="$(find jubot_demo)/urdf/box_urdf.urdf" /><!-- 启动 rviz --><!-- <node pkg="rviz" type="rviz" name="rviz" /> --><node pkg="rviz" type="rviz" name="rviz" args="-d $(find jubot_demo)/config/rviz/show_four_wheel_car.rviz" /><!-- 启动机器人状态和关节状态发布节点 --><node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" /><node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" /><!-- 启动图形化的控制关节运动节点 --><node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" /></launch>

urdf:

<!-- <robot name="mycar"><link name="base_link"><visual><geometry><box size="0.5 0.2 0.1" /></geometry></visual></link>
</robot> --><robot name="mycar"><!-- 设置 base_footprint  --><link name="base_footprint"><visual><geometry><sphere radius="0.001" /></geometry></visual></link><!-- 添加底盘 --><!-- 参数形状:圆柱 半径:10     cm 高度:8      cm 离地:1.5    cm--><link name="base_link"><visual><geometry><cylinder radius="0.1" length="0.08" /></geometry><origin xyz="0 0 0" rpy="0 0 0" /><material name="yellow"><color rgba="0.8 0.3 0.1 0.5" /></material></visual></link><joint name="base_link2base_footprint" type="fixed"><parent link="base_footprint" /><child link="base_link"/><origin xyz="0 0 0.055" /></joint><!-- 添加驱动轮 --><!-- 添加驱动轮 --><!--驱动轮是侧翻的圆柱参数半径: 3.25 cm宽度: 1.5  cm颜色: 黑色关节设置:x = 0y = 底盘的半径 + 轮胎宽度 / 2z = 离地间距 + 底盘长度 / 2 - 轮胎半径 = 1.5 + 4 - 3.25 = 2.25(cm)axis = 0 1 0--><link name="left_wheel"><visual><geometry><cylinder radius="0.0325" length="0.015" /></geometry><origin xyz="0 0 0" rpy="1.5705 0 0" /><material name="black"><color rgba="0.0 0.0 0.0 1.0" /></material></visual></link><joint name="left_wheel2base_link" type="continuous"><parent link="base_link" /><child link="left_wheel" /><origin xyz="0 0.1 -0.0225" /><axis xyz="0 1 0" /></joint><link name="right_wheel"><visual><geometry><cylinder radius="0.0325" length="0.015" /></geometry><origin xyz="0 0 0" rpy="1.5705 0 0" /><material name="black"><color rgba="0.0 0.0 0.0 1.0" /></material></visual></link><joint name="right_wheel2base_link" type="continuous"><parent link="base_link" /><child link="right_wheel" /><origin xyz="0 -0.1 -0.0225" /><axis xyz="0 1 0" /></joint><!-- 添加万向轮(支撑轮) --><!-- 添加万向轮(支撑轮) --><!--参数形状: 球体半径: 0.75 cm颜色: 黑色关节设置:x = 自定义(底盘半径 - 万向轮半径) = 0.1 - 0.0075 = 0.0925(cm)y = 0z = 底盘长度 / 2 + 离地间距 / 2 = 0.08 / 2 + 0.015 / 2 = 0.0475 axis= 1 1 1--><link name="front_wheel"><visual><geometry><sphere radius="0.0075" /></geometry><origin xyz="0 0 0" rpy="0 0 0" /><material name="black"><color rgba="0.0 0.0 0.0 1.0" /></material></visual></link><joint name="front_wheel2base_link" type="continuous"><parent link="base_link" /><child link="front_wheel" /><origin xyz="0.0925 0 -0.0475" /><axis xyz="1 1 1" /></joint><link name="back_wheel"><visual><geometry><sphere radius="0.0075" /></geometry><origin xyz="0 0 0" rpy="0 0 0" /><material name="black"><color rgba="0.0 0.0 0.0 1.0" /></material></visual></link><joint name="back_wheel2base_link" type="continuous"><parent link="base_link" /><child link="back_wheel" /><origin xyz="-0.0925 0 -0.0475" /><axis xyz="1 1 1" /></joint>
</robot>

4.可视化

先编译配置launch文件,退到主目录catkin_ws下,执行catkin_make。

成功之后,再执行 catkin_make install。
然后在主目录catkin_make下配置环境变量source devel/setup.bash。

检测环境变量是否配置成功echo $ROS_PACKAGE_PATH。

再启动launch文件,完成可视化的建立:
创建启动文件:

cd ~/catkin_ws/src/mbot_description/launch
sudo gedit display_mbot_base_urdf.launch

在打开的文件中写入

<launch><!-- 加载的参数名字叫robot_description,具体内容是urdf相关模型的路径 --><param name="robot_description" textfile="$(find mbot_description)/urdf/mbot_base.urdf" /><!-- 设置GUI参数,显示关节控制插件 --><param name="use_gui" value="true"/><!-- 运行joint_state_publisher节点,发布机器人的关节状态  --><node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_publisher" /><!-- 运行robot_state_publisher节点,发布tf  --><node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" /><!-- 运行rviz可视化界面,保存每次打开之后的相关插件,保存到config文件夹下面 --><node name="rviz" pkg="rviz" type="rviz" args="-d $(find mbot_description)/config/mbot_urdf.rviz" required="true" />
</launch>

建立可视化

roslaunch jubot_demo box_launch.launch

得到模型:

在这里插入图片描述

三、添加雷达

1.xacro文件

在urdf文件夹下建一个xacro文件夹,在终端打开。

在文件夹中新建my_base.urdf.xacro文件,编写xacro文件:

vim my_base.urdf.xacro

在打开的文件中写入


<robot name="my_base" xmlns:xacro="http://www.ros.org/wiki/xacro"><xacro:property name="PI" value="3.141"/><material name="black"><color rgba="0.0 0.0 0.0 1.0" /></material><xacro:property name="base_footprint_radius" value="0.001" /> <xacro:property name="base_link_radius" value="0.1" /> <xacro:property name="base_link_length" value="0.08" /> <xacro:property name="earth_space" value="0.015" /> <link name="base_footprint"><visual><geometry><sphere radius="${base_footprint_radius}" /></geometry></visual></link><link name="base_link"><visual><geometry><cylinder radius="${base_link_radius}" length="${base_link_length}" /></geometry><origin xyz="0 0 0" rpy="0 0 0" /><material name="yellow"><color rgba="0.5 0.3 0.0 0.5" /></material></visual></link><joint name="base_link2base_footprint" type="fixed"><parent link="base_footprint" /><child link="base_link" /><origin xyz="0 0 ${earth_space + base_link_length / 2 }" /></joint><xacro:property name="wheel_radius" value="0.0325" /><xacro:property name="wheel_length" value="0.015" /><xacro:macro name="add_wheels" params="name flag"><link name="${name}_wheel"><visual><geometry><cylinder radius="${wheel_radius}" length="${wheel_length}" /></geometry><origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" /><material name="black" /></visual></link><joint name="${name}_wheel2base_link" type="continuous"><parent link="base_link" /><child link="${name}_wheel" /><origin xyz="0 ${flag * base_link_radius} ${-(earth_space + base_link_length / 2 - wheel_radius) }" /><axis xyz="0 1 0" /></joint></xacro:macro><xacro:add_wheels name="left" flag="1" /><xacro:add_wheels name="right" flag="-1" /><xacro:property name="support_wheel_radius" value="0.0075" /> <!-- 支撑轮半径 --><xacro:macro name="add_support_wheel" params="name flag" ><link name="${name}_wheel"><visual><geometry><sphere radius="${support_wheel_radius}" /></geometry><origin xyz="0 0 0" rpy="0 0 0" /><material name="black" /></visual></link><joint name="${name}_wheel2base_link" type="continuous"><parent link="base_link" /><child link="${name}_wheel" /><origin xyz="${flag * (base_link_radius - support_wheel_radius)} 0 ${-(base_link_length / 2 + earth_space / 2)}" /><axis xyz="1 1 1" /></joint></xacro:macro><xacro:add_support_wheel name="front" flag="1" /><xacro:add_support_wheel name="back" flag="-1" /></robot>

2.集成和修改launch

加载robot_description时使用command属性,属性值就是调用 xacro 功能包的 xacro 程序直接解析 xacro 文件,然后启动launch文件

box_launch

 <launch><!-- <param name="robot_description" textfile="$(find jubot_demo)/urdf/box_urdf.urdf" /> --><param name="robot_description" command="$(find xacro)/xacro $(find jubot_demo)/urdf/xacro/my_base.urdf.xacro" /><!-- <node pkg="rviz" type="rviz" name="rviz" /> --><node pkg="rviz" type="rviz" name="rviz" args="-d $(find jubot_demo)/config/rviz/show_four_wheel_car.rviz" /><node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" /><node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" /><node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" /></launch>

将launch修改为

 <launch><!-- <param name="robot_description" command="$(find xacro)/xacro $(find jubot_demo)/urdf/xacro/my_base.urdf.xacro" /> --><param name="robot_description" command="$(find xacro)/xacro $(find jubot_demo)/urdf/xacro/my_car_camera.urdf.xacro" /><node pkg="rviz" type="rviz" name="rviz" args="-d $(find jubot_demo)/config/rviz/show_four_wheel_car.rviz" /><node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" /><node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" /><node pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" name="joint_state_publisher_gui" /></launch>

3.添加摄像头和雷达

在xacro文件夹中新建my_camera.urdf.xacro

<robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro"><!-- 摄像头属性 --><xacro:property name="camera_length" value="0.01" /> <!-- 摄像头长度(x) --><xacro:property name="camera_width" value="0.025" /> <!-- 摄像头宽度(y) --><xacro:property name="camera_height" value="0.025" /> <!-- 摄像头高度(z) --><xacro:property name="camera_x" value="0.08" /> <!-- 摄像头安装的x坐标 --><xacro:property name="camera_y" value="0.0" /> <!-- 摄像头安装的y坐标 --><xacro:property name="camera_z" value="${base_link_length / 2 + camera_height / 2}" /> <link name="camera"><visual><geometry><box size="${camera_length} ${camera_width} ${camera_height}" /></geometry><origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" /><material name="black" /></visual></link><joint name="camera2base_link" type="fixed"><parent link="base_link" /><child link="camera" /><origin xyz="${camera_x} ${camera_y} ${camera_z}" /></joint>
</robot>

my_car_camera.urdf.xacro

 <!-- 组合小车底盘与摄像头与雷达 -->
<robot name="my_car_camera" xmlns:xacro="http://wiki.ros.org/xacro"><xacro:include filename="my_base.urdf.xacro" /><xacro:include filename="my_camera.urdf.xacro" /><xacro:include filename="my_laser.urdf.xacro" />
</robot>

my_laser.urdf.xacro文件

 
<robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro"><xacro:property name="camera_length" value="0.01" /> <xacro:property name="camera_width" value="0.025" /> <xacro:property name="camera_height" value="0.025" /> <xacro:property name="camera_x" value="0.08" /> <xacro:property name="camera_y" value="0.0" /> <xacro:property name="camera_z" value="${base_link_length / 2 + camera_height / 2}" /> <link name="camera"><visual><geometry><box size="${camera_length} ${camera_width} ${camera_height}" /></geometry><origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" /><material name="black" /></visual></link><joint name="camera2base_link" type="fixed"><parent link="base_link" /><child link="camera" /><origin xyz="${camera_x} ${camera_y} ${camera_z}" /></joint>
</robot>

在这里插入图片描述

三.GAZEBO仿真

修改碰撞属性和惯性矩阵,导入到gazebo中。

my_base.urdf.xacro:

 <robot name="base" xmlns:xacro="http://wiki.ros.org/xacro"><xacro:macro name="sphere_inertial_matrix" params="m r"><inertial><mass value="${m}" /><inertia ixx="${2*m*r*r/5}" ixy="0" ixz="0"iyy="${2*m*r*r/5}" iyz="0" izz="${2*m*r*r/5}" /></inertial></xacro:macro><xacro:macro name="cylinder_inertial_matrix" params="m r h"><inertial><mass value="${m}" /><inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"iyy="${m*(3*r*r+h*h)/12}" iyz = "0"izz="${m*r*r/2}" /> </inertial></xacro:macro><xacro:macro name="Box_inertial_matrix" params="m l w h"><inertial><mass value="${m}" /><inertia ixx="${m*(h*h + l*l)/12}" ixy = "0" ixz = "0"iyy="${m*(w*w + l*l)/12}" iyz= "0"izz="${m*(w*w + h*h)/12}" /></inertial></xacro:macro>
</robot>

my_camera.urdf.xacro:

 <robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro"><xacro:property name="camera_length" value="0.01" /> <xacro:property name="camera_width" value="0.025" /> <xacro:property name="camera_height" value="0.025" /> <xacro:property name="camera_x" value="0.08" /> <xacro:property name="camera_y" value="0.0" /> <xacro:property name="camera_z" value="${base_link_length / 2 + camera_height / 2}" /> <xacro:property name="camera_m" value="0.01" /> <link name="camera"><visual><geometry><box size="${camera_length} ${camera_width} ${camera_height}" /></geometry><origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" /><material name="black" /></visual><collision><geometry><box size="${camera_length} ${camera_width} ${camera_height}" /></geometry><origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" /></collision><xacro:Box_inertial_matrix m="${camera_m}" l="${camera_length}" w="${camera_width}" h="${camera_height}" /></link><joint name="camera2base_link" type="fixed"><parent link="base_link" /><child link="camera" /><origin xyz="${camera_x} ${camera_y} ${camera_z}" /></joint><gazebo reference="camera"><material>Gazebo/Blue</material></gazebo>
</robot>

my_car_camera.urdf.xacro:

 <robot name="my_laser" xmlns:xacro="http://wiki.ros.org/xacro"><xacro:property name="support_length" value="0.15" /> <xacro:property name="support_radius" value="0.01" /> <xacro:property name="support_x" value="0.0" /> <xacro:property name="support_y" value="0.0" /> <xacro:property name="support_z" value="${base_link_length / 2 + support_length / 2}" /> <xacro:property name="support_m" value="0.02" /> <link name="support"><visual><geometry><cylinder radius="${support_radius}" length="${support_length}" /></geometry><origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" /><material name="red"><color rgba="0.8 0.2 0.0 0.8" /></material></visual><collision><geometry><cylinder radius="${support_radius}" length="${support_length}" /></geometry><origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" /></collision><xacro:cylinder_inertial_matrix m="${support_m}" r="${support_radius}" h="${support_length}" /></link><joint name="support2base_link" type="fixed"><parent link="base_link" /><child link="support" /><origin xyz="${support_x} ${support_y} ${support_z}" /></joint><gazebo reference="support"><material>Gazebo/White</material></gazebo><xacro:property name="laser_length" value="0.05" /> <xacro:property name="laser_radius" value="0.03" /> <xacro:property name="laser_x" value="0.0" /> <xacro:property name="laser_y" value="0.0" /> <xacro:property name="laser_z" value="${support_length / 2 + laser_length / 2}" /> <xacro:property name="laser_m" value="0.1" /> <link name="laser"><visual><geometry><cylinder radius="${laser_radius}" length="${laser_length}" /></geometry><origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" /><material name="black" /></visual><collision><geometry><cylinder radius="${laser_radius}" length="${laser_length}" /></geometry><origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" /></collision><xacro:cylinder_inertial_matrix m="${laser_m}" r="${laser_radius}" h="${laser_length}" /></link><joint name="laser2support" type="fixed"><parent link="support" /><child link="laser" /><origin xyz="${laser_x} ${laser_y} ${laser_z}" /></joint><gazebo reference="laser"><material>Gazebo/Black</material></gazebo>
</robot>

my_laser.urdf.xacro:

<robot name="my_car_camera" xmlns:xacro="http://wiki.ros.org/xacro"><xacro:include filename="gazebo_head.xacro" /><xacro:include filename="gazebo_car.xacro" /><xacro:include filename="gazebo_laser.xacro" /><xacro:include filename="gazebo_camera.xacro" />
</robot>

在终端进入launch目录

vim gazebo_car.launch

在打开的文件中写入:

<launch><param name="robot_description" command="$(find xacro)/xacro $(find urdf_gazebo)/urdf/xacro/gazebo_car_union.xacro" /><include file="$(find gazebo_ros)/launch/empty_world.launch" /><node pkg="gazebo_ros" type="spawn_model" name="model" args="-urdf -model mycar -param robot_description"  />
</launch>

四、orbslam2+kitti

1.下载

  • 下载依赖:https://gitcode.com/raulmur/ORB_SLAM2/overview?tab=readme-ov-file&utm_source=csdn_github_accelerator&isLogin=1

  • 下载Pangolin

cd Pangolin
mkdir build && cd build
cmake ..
sudo make -j8
  • 下载Ceres
sudo apt-get install  liblapack-dev libsuitesparse-dev libcxsparse3 libgflags-dev libgoogle-glog-dev libgtest-dev
cd ceres-solver
mkdir build && cd build
cmake ..
sudo make -j8
sudo make install
  • 下载g2o
sudo apt-get install qt5-qmake qt5-default libqglviewer-dev-qt5 libsuitesparse-dev libcxsparse3 libcholmod3
cd g2o
mkdir build && cd build
cmake ..
sudo make -j8
sudo make install
  • 下载DBoW3
mkdir build
cd build/
cmake ..
make
sudo make install

2.安装编译ORB_SLAM2

(1)下载ORB_SLAM2的安装包

sudo apt-get install ORB_SLAM2

(2)配置环境

cd ~/catkin_ws/src/ORB_SLAM2
sudo chmod +x build.sh
./build.sh

(3)使用ROS编译

sudo chmod +x build_ros.sh
./build_ros.sh

3.运行Kitee数据集

  • 下载数据集:https://www.cvlibs.net/datasets/kitti/eval_odometry.php

  • 运行ORB_SLAM2
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/351745.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 集合框架:LinkedList 的介绍、使用、原理与源码解析

大家好&#xff0c;我是栗筝i&#xff0c;这篇文章是我的 “栗筝i 的 Java 技术栈” 专栏的第 014 篇文章&#xff0c;在 “栗筝i 的 Java 技术栈” 这个专栏中我会持续为大家更新 Java 技术相关全套技术栈内容。专栏的主要目标是已经有一定 Java 开发经验&#xff0c;并希望进…

Guitar Pro 8软件安装包下载

简介&#xff1a; Guitar Pro吉他软件为帮助所有吉他爱好者学习、绘谱、创作而设计——包含吉他的现有指法及音色&#xff0c; Guitar Pro能了解各类线谱&#xff0c;看谱练吉他&#xff0c;对谱听示范&#xff0c;记录初创声音。 在做弹拨乐器的滑音、倚音、推弦、揉弦、泛…

python图像处理库-PIL(Pillow)

PIL库全称为Python Imaging Library&#xff0c;即Python图像处理库&#xff0c;是一个在Python中用于处理图像的非常流行的库。 一、PIL介绍 这个库提供了广泛的文件格式支持、高效的内部表示以及相当强大的图像处理功能。 核心图像库旨在快速访问存储在几种基本像素格式中的数…

Excel报表

(Apache POI) 入门案例 P164 使用POI需要导入下面2个坐标&#xff1a; <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId> </dependency> <dependency><groupId>org.apache.poi</groupId>&…

Python基础教程(二十三):JSON数据解析

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…

LabVIEW常用的加密硬件

LabVIEW在工程和科学领域中广泛应用&#xff0c;其中数据保护和程序安全尤为重要。为了确保数据的安全性和完整性&#xff0c;常用的加密硬件设备包括TPM&#xff08;可信平台模块&#xff09;、HSM&#xff08;硬件安全模块&#xff09;和专用加密芯片。本文将推荐几款常用的加…

部署大模型LLM

在autodl上部署大模型 windows运行太麻烦&#xff0c;环境是最大问题。 选择云上服务器【西北B区 / 514机】 cpp (c c plus plus) 纯 C/C 实现&#xff0c;无需外部依赖。针对使用 ARM NEON、Accelerate 和 Metal 框架的 Apple 芯片进行了优化。支持适用于 x86 架构的 AVX、…

猎食者优化算法 Python代码免费获取

声明&#xff1a;文章是从本人公众号中复制而来&#xff0c;因此&#xff0c;想最新最快了解各类算法的家人&#xff0c;可关注我的VX公众号&#xff1a;python算法小当家&#xff0c;不定期会有很多免费代码分享~ 猎食者优化算法 Python代码免费获取 猎食者优化算法(hunter–…

基于GTX的64B66B编码IP生成(高速收发器二十)

点击进入高速收发器系列文章导航界面 1、配置GTX IP 相关参数 前文讲解了64B66B编码解码原理&#xff0c;以及GTX IP实现64B66B编解码的相关信号组成&#xff0c;本文生成64B66B编码的GTX IP。 首先如下图所示&#xff0c;需要对GTX共享逻辑进行设置&#xff0c;为了便于扩展&a…

什么是微前端

什么是微前端&#xff1f; 微前端 这个名词&#xff0c;第一次被提出还是在2016年底&#xff0c;那是在 ThoughtWorks Technology Radar。这个概念将微服务这个被广泛应用于服务端的技术范式扩展到前端领域。现代的前端应用的发展趋势正在变得越来越富功能化&#xff0c;富交互…

RPG游戏完整指南

环境&#xff1a;unity2021urp 本教程教大家如何使用Unity创建一个RPG游戏&#xff0c;玩家可以在城镇场景中进行导航并寻找战斗&#xff0c;并在战斗中遇到不同类型的敌人。玩家可以向敌人施加不同的动作&#xff0c;如&#xff1a;常规攻击和撤离。这会是一个十分有趣的体验。…

[next.js] svgr/webpack

nextjs如何配置svg文件&#xff0c;使其像react组件一样导入? 当前next.js 开发环境我使用了--turbo 来开启turbopack加速文件构建&#xff0c;所以之前的一些webpack loader之类的无法正常工作。通过搜索发现一般都是使用svgr/webpack来处理svg&#xff0c;打开svgr官网发现…

Linux初识地址空间

前言 上一期我们对进程优先级、命令行参数以及环境和变量做了介绍&#xff01;以前我们就提到过一个问题有了运行队列为什么还要有优先级&#xff1f;本期将带你揭晓&#xff01; 本期内容介绍 虚拟地址空间的引入 虚拟地址空间的介绍 如何理解地址空间 为什么要有地址空间 如…

docker和docker compose 部署

一. 将微服务运行在docker上&#xff1a; 1.新建一个空文件夹docker-demo&#xff0c;在里面再新建文件夹app&#xff0c;在app目录下新建一个名为Dockerfile的文件。 2.编写Dockerfile文件 3.构建镜像 4.启动镜像 5.可以访问了。 二使用Dockerfile构建微服务镜像 1.将j…

数据库系统概念(第八周 第一堂)(规范化关系数据库设计)(强推学习!!!)

目录 前言 E-R模型质量低的深层原因 数据依赖 函数依赖 主属性/非主属性 逻辑蕴含与闭包 Armstrongs Axiom 求解F闭包算法 求解属性集闭包算法 属性集闭包的作用 候选码求解理论和算法 候选码求解理论 无关属性 检验方法 正则覆盖 关系模式的设计 关系…

Spark常见的可以优化的点

Shuffle 复用 # 1.以下操作会复用的shuffle结果&#xff0c;只会读一遍数据源 val rdd1 sc.textFile("hdfs://zjyprc-hadoop/tmp/hive-site.xml").flatMap(_.split(" ")).map(x > (x,1)).reduceByKey(_ _).filter(_._2 > 1) rdd1.count() rdd1.fil…

Python高级用法:路径与文件操作(os与pathlib)

路径与文件 前言导入包判断路径存在判断路径类型&#xff08;判断文件还是文件夹&#xff09;获取父路径写入读出文件获得路径中所有子文件/子文件夹获取文件扩展名获取多个文件扩展名获取路径的组件创建目录删除文件或空目录 前言 在Python中&#xff0c;os模块提供了与操作系…

美国裸机云站群服务器使用指南

在当今数字化时代&#xff0c;网站和应用程序的稳定运行对于企业和个人都至关重要。为了满足日益增长的业务需求&#xff0c;裸机云站群服务器成为了一个理想的选择。以下是美国裸机云站群服务器的使用指南&#xff0c;帮助您更好地利用这一强大的云服务。 一、选择信誉良好的云…

AI大模型在运动项目的深度融合和在穿戴设备的实践及未来运动健康技术发展

文章目录 1. 技术架构2. 模型选择2.1 LSTM&#xff08;长短期记忆网络&#xff09;2.2 CNN&#xff08;卷积神经网络&#xff09;2.3 Transformer 3. 数据处理数据预处理 4. 实时性要求4.1 边缘计算4.2 模型优化 5. 数据隐私与安全6. 深入分析AI大模型在穿戴设备的应用和未来发…

k8s中的pod域名解析失败定位案例

问题描述 我在k8s中启动了一个Host网络模式的pod&#xff0c;这个pod的域名解析失败了。 定位步骤 敲kubectl exec -it [pod_name] -- bash进入pod后台&#xff0c;查看/etc/resolv.conf&#xff0c;发现nameserver配的有问题。这里我预期的nameserver应该使用宿主机的&…