RK3588 Android12音频驱动分析全网最全

最近没有搞音频相关的了,在搞BMS, 把之前的经验总结一下。

一、先看一下Android 12音频总架构

从这张图可以看到音频数据流一共经过了3个用户空间层的进程,然后才流到kernel驱动层。Android版本越高,通用性越高,耦合性越低,但是带来的资源开销也越大,延时也越大。本文主要介绍驱动层相关的知识。详细流程可以参考:Android12 AudioFlinger 读写PCM数据-CSDN博客; Android12 Native C++ 层AudioRecord录音AudioTrack播放_android c++ 录制音频-CSDN博客

Android 12 AudioFlinger 分析(RK3588)-CSDN博客

二、ASoC音频驱动框架

2.1 ASoC简介:

ASoC的由来
     ASoC全程ALSA System on Chip ,是基于标准ALSA驱动层封装而来,可以更好地支持嵌入式处理器和移动设备中音频驱动功能。简单的理解就是ASoC把alsa根据硬件抽象成三个独立的驱动模块。通过snd_soc_dai_link 结构体来连接到一起组成一个声卡card暴露给用户空间。
ASoc音频系统可以被划分为:板载硬件(Machine)、Soc(Platform)、Codec三大部分,如下图所示:

经典常用DAI(digital audio interface)接口有I2S,PDM,TDM, SPDIF,UART,USB。 控制接口大部分是I2C,SPI。
Platform的作用:
Platform端包含I2S等数字接口驱动,和dma pcm驱动这个是直接调用linux dma功能api,具体dma驱动是另外一套驱动框架。主要作用是按软件设定的格式收发pcm数据。soc传输pcm数据软件层流程(更详细可参考tinyalsa播放录音调用流程-CSDN博客):

在platform驱动初始化时会申请dma通道配置相关参数如,源地址,目的地址,数据位宽,burst size,传输方向等。I2S IP一般会有32个sample的FIFO,I2S驱动会设置一个空闲阀值如15,当I2S IP空闲值大于等于15就会通过Req发信号给DMA IP,DMA收到信号后从指定memory地址(软件层的Ring_Buffer)搬运数据到I2S的FIFO,然后返回Ack信号给I2S IP。DMA搬运数据达到一定值就会产生一个中断给CPU,从而运行DMA中断处理函数更新读写指针等相关参数。录音流程则是返过来。
从上面两个图可以看出,对于满负荷运行场景出现断续卡顿问题除了CPU软件层发生XRUN外,芯片各个模块都高负荷运行内部AXI APB AHB总线带宽可能不够,导致DMA不能及时搬运数据,也就是I2S和DMA硬件也会发生XRUN。这种情况从CPU软件层很难有好的解决方法。
Codec的作用:
数模转换,对于playback是将接收到的数字信号转换为模拟信号,对于capture是将采集到的模拟信号转换为数字信号发送出去。对于一些高级的codec还提供了多路音源混音,EQ,DRC,AGC,NR降噪等功能。
Machine的作用:
一款PCBA产品可以有很多个codec的音频接口,cpu端的音频接口,Machine驱动的作用就是通过snd_soc_dai_link 结构体把具体的platform,codec链接在一起组成音频通路,注册成一个声卡card暴露给用户空间。

2.2 具体驱动例子:

下面基于RK3588, kernel-5.10平台举个例子:
Platform端(RK3588),这部分驱动是soc芯片原厂应该做好的:

rk3588-evb1-lp4.dtsi:
i2s0_8ch: i2s@fe470000 {compatible = "rockchip,rk3588-i2s-tdm";reg = <0x0 0xfe470000 0x0 0x1000>;interrupts = <GIC_SPI 180 IRQ_TYPE_LEVEL_HIGH>;......................................
};
rockchip_i2s_tdm.c:
static const struct snd_soc_component_driver rockchip_i2s_tdm_component = {.name = DRV_NAME,
};
//这些函数和具体soc有关,操作soc相关寄存器配置i2s,tdm格式
static const struct snd_soc_dai_ops rockchip_i2s_tdm_dai_ops = {.hw_params = rockchip_i2s_tdm_hw_params,//设置bclk,lrclk,采样位宽通道数.set_sysclk = rockchip_i2s_tdm_set_sysclk,// 设置mclk.set_fmt = rockchip_i2s_tdm_set_fmt,//设置i2s格式,.set_tdm_slot = rockchip_dai_tdm_slot,// 设置tdm通道数.trigger = rockchip_i2s_tdm_trigger,// 启动/停止i2s收发数据
};
static int rockchip_i2s_tdm_dai_prepare(struct platform_device *pdev,struct snd_soc_dai_driver **soc_dai)
{struct snd_soc_dai_driver rockchip_i2s_tdm_dai = {.probe = rockchip_i2s_tdm_dai_probe,.playback = {.stream_name = "Playback",.channels_min = 2,.channels_max = 16,.rates = SNDRV_PCM_RATE_8000_192000,.formats = (SNDRV_PCM_FMTBIT_S8 |....),},.capture = {...........................},.ops = &rockchip_i2s_tdm_dai_ops,};*soc_dai = devm_kmemdup(&pdev->dev, &rockchip_i2s_tdm_dai,sizeof(rockchip_i2s_tdm_dai), GFP_KERNEL);return 0;
}
// 解析rk3588-evb1-lp4.dtsi文件 i2s0_8ch节点填充各个参数然后注册一个snd_soc_dai_driver 
static int rockchip_i2s_tdm_probe(struct platform_device *pdev)
{struct device_node *node = pdev->dev.of_node;struct device_node *cru_node;const struct of_device_id *of_id;struct rk_i2s_tdm_dev *i2s_tdm;struct snd_soc_dai_driver *soc_dai;//playback m2d, 地址为i2s的tx fifoi2s_tdm->playback_dma_data.addr = res->start + I2S_TXDR;i2s_tdm->playback_dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;i2s_tdm->playback_dma_data.maxburst = 8;//capture d2m, 地址为i2s的rx fifoi2s_tdm->capture_dma_data.addr = res->start + I2S_RXDR;i2s_tdm->capture_dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;i2s_tdm->capture_dma_data.maxburst = 8;dev_set_drvdata(&pdev->dev, i2s_tdm);// 填充soc_dai各个字段ret = rockchip_i2s_tdm_dai_prepare(pdev, &soc_dai);// 注册dai接口ret = devm_snd_soc_register_component(&pdev->dev,&rockchip_i2s_tdm_component,soc_dai, 1);// 注册dma pcm,会调用到linux dma通用api。ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
}

Codec端驱动是芯片原厂提供,产品开发公司适配调试:

rk3588-evb1-lp4.dtsi:
&i2c7 {status = "okay";es8388: es8388@11 {status = "okay";compatible = "everest,es8388", "everest,es8323";........................................};
};
es8328.c:
// 这些函数操作codec寄存器,设置格式等。i2c接口
static const struct snd_soc_dai_ops es8328_dai_ops = {.startup  = es8328_startup,.hw_params = es8328_hw_params,.mute_stream  = es8328_mute,.set_sysclk = es8328_set_sysclk,.set_fmt  = es8328_set_dai_fmt,.no_capture_mute = 1,
};
// dai接口参数
static struct snd_soc_dai_driver es8328_dai = {.name = "es8328-hifi-analog",.playback = {.stream_name = "Playback",.channels_min = 2,.channels_max = 2,.rates = ES8328_RATES,.formats = ES8328_FORMATS,},.capture = {........................},.ops = &es8328_dai_ops,.symmetric_rates = 1,
};
// 设置各种控制接口
static const struct snd_soc_component_driver es8328_component_driver = {
};
// 解析rk3588-evb1-lp4.dtsi文件 es8388节点填充各个参数然后注册一个snd_soc_dai_driver 
int es8328_probe(struct device *dev, struct regmap *regmap)
{return devm_snd_soc_register_component(dev,&es8328_component_driver, &es8328_dai, 1);
}

Machine端驱动是产品开发公司实现/调试:

rk3588-evb1-lp4.dtsi:
es8388_sound: es8388-sound {
status = "okay";
compatible = "rockchip,multicodecs-card";
rockchip,card-name = "rockchip-es8388";
rockchip,format = "i2s";
rockchip,mclk-fs = <256>;
//指定platform端那个dai接口
rockchip,cpu = <&i2s0_8ch>;
//指定codec端那个dai接口
rockchip,codec = <&es8388>;
rockchip,audio-routing =
"Headphone", "LOUT1",
..............................
"RINPUT2", "Headset Mic";
};
rockchip_multicodecs.c:
static int rk_multicodecs_probe(struct platform_device *pdev)
{struct snd_soc_card *card;struct device_node *np = pdev->dev.of_node;struct snd_soc_dai_link *link;//该结构体用于绑定platform,codec。/*一个声卡包含下面三个comment。*/struct snd_soc_dai_link_component *cpus;struct snd_soc_dai_link_component *platforms;struct snd_soc_dai_link_component *codecs;link = &mc_data->dai_link;link->name = "dailink-multicodecs";link->stream_name = link->name;link->init = rk_dailink_init;link->ops = &rk_ops; // snd_soc_opslink->cpus = cpus;link->platforms = platforms;link->num_cpus  = 1;link->num_platforms = 1;link->ignore_pmdown_time = 1;card->dai_link = link; //填充card->num_links = 1;codecs = devm_kcalloc(&pdev->dev, idx,sizeof(*codecs), GFP_KERNEL);link->codecs = codecs;link->num_codecs = idx;idx = 0;for (i = 0; i < count; i++) {// dts : rockchip,codec = <&es8388>;node = of_parse_phandle(np, "rockchip,codec", i);if (!node)return -ENODEV;if (!of_device_is_available(node))continue;ret = of_parse_phandle_with_fixed_args(np, "rockchip,codec",0, i, &args);if (ret)return ret;codecs[idx].of_node = node;ret = snd_soc_get_dai_name(&args, &codecs[idx].dai_name);if (ret)return ret;idx++;}// dts: rockchip,cpu = <&i2s0_8ch>;link->cpus->of_node = of_parse_phandle(np, "rockchip,cpu", 0);link->platforms->of_node = link->cpus->of_node;ret = snd_soc_of_parse_audio_routing(card, "rockchip,audio-routing");//注册声卡ret = devm_snd_soc_register_card(&pdev->dev, card);
}

到此一个声卡就注册成功了,在用户空间可以看到:

console:/storage/emulated/0 # cat /proc/asound/cards0 [rockchipes8388 ]: rockchip-es8388 - rockchip-es8388rockchip-es8388
2.3 详细声卡驱动注册UML流程图:

2.4 RK 额外提供的Combo DAI :

RK 平台支持任意 DAI 的组合使用,重组 DAI 生成 Combo DAI,如下图所示:

示例:将 i2s_8ch_2 和 pdm_8ch 组合成 Combo DAI ,这样用户层看到的是一个声卡节点可以同时读写多个i2s,pdm的数据,避免驱动和进程调度导致的动态延时差。

&i2s_8ch_2 { status = "okay"; rockchip,no-dmaengine; }; &pdm_8ch { status = "okay"; rockchip,no-dmaengine; }; &multi-dais { dais = <&i2s_8ch_2>, <&pdm_8ch>; }; 

三、音频常用协议

3.1 PDM协议(切记虽然叫数字麦克风但是tx发送0x55,rx接收到的并不是0x55)

PDM(Pulse Density Modulation)是一种用数字信号表示模拟信号的调制方法,脉冲的相对密度对应于模拟信号的振幅。同为将模拟量转换为数字量的方法,PCM使用等间隔采样方法,将每次采样的模拟分量幅度表示为N位的数字分量(N = 量化深度),因此PCM方式每次采样的结果都是N bit字长的数据。PDM则使用远高于PCM采样率的时钟采样调制模拟分量,只有1位输出,要么为0,要么为1。因此通过PDM方式表示的数字音频也被称为Oversampled 1-bit Audio。相比PDM一连串的0和1,PCM的量化结果更为直观简单。
在以PDM方式作为模数转换方法的应用接收端,需要用到抽取滤波器(Decimation Filter)将密密麻麻的0和1代表的密度分量转换为幅值分量,而PCM方式得到的就已经是幅值相关的数字分量。如下图所示意为通过PDM方式数字化的正弦波。

红色是模拟信号的正玄波,蓝色柱条代表1,白色代表0。可以看到正玄波的peaks蓝色密度最大也就是1最多代表模拟信号幅度最大。正玄波的troughs蓝色最少表示幅度最小。
PCM方式的逻辑更加简单,但需要用到数据时钟,采样时钟和数据信号三根信号线;PDM方式的逻辑相对复杂,但它只需要两根信号线,即时钟和数据。通过PDM接口方式,传输双声道数据只要用到两根信号线。如下图示为Maxim的Class-D类型功放MAX98358对PDM接口时序的要求,可以看到它在PDM_CLK的上升沿采样左声道数据,在PDM_CLK下降沿采样右声道数据。

PDM MIC sph0690lm4h-1 时序:

3.2 TDM协议

时分复用技术(time-division multiplexing, TDM)是将不同的信号相互交织在不同的时间段内,沿着同一个信道传输;在接收端再用某种方法,将各个时间段内的信号提取出来还原成原始信号的通信技术。TDM是在时间上将信道划分在不同的时隙,在不同的时隙上间插不同的脉冲信号,依次来实现时域上多路信号的复用。假设每个输入的数据比特率是9. 6kbit / s ,线路的最大比特率为76. 8 kbit / s ,则可传输8 路信号。这种技术可以在同一个信道上传输多路信号。在音频领域常用于传输多通道pcm数据。

典型TDM格式时序图:


一般SOC端每个IP有4跟线,可以配置成I2S,PCM,TDM格式,具体时序查看datasheet为准。
时钟(BCLK)频率的计算:
FSYNC/LRCK的频率等于音频的采样率(例如44.1 kHz,48 kHz等)。Frame每次传输包括所有声道的数据。PCM采样音频数据量化深度一般在16-32bit(最常见为16/24bit)。那么对于8声道,每个声道32bit音频数据,采样率48kHz的系统,TDM的系统时钟速率为:8 × 32 × 48kHz = 12.288 MHz,在一些Datasheet中可以见到TDM128/TDM256/TDM384/TDM512等,数字的含义为单个TDM数据帧包含数据的比特数(即帧长)。如上例8声道(Channels)32bit的音频数据,亦称为TDM256(=8*32)。TDM系统时钟速率就可以简单地用采样率乘以TDM帧长计算得出。相同的例子,TDM系统时钟速率:48kHz × 256 = 12.288 MHz。
 

3.3 PCM协议

PCM (Pulse Code Modulation) 脉冲编码调制是将模拟信号数字化的方法。原理是用一个固定的频率对模拟信号进行采样,采样后的信号在波形上看就像一串连续的幅值不一的脉冲(脉搏似的短暂起伏的电冲击),把这些脉冲的幅值按一定精度进行量化,这些量化后的数值被连续的输出、传输、处理或记录到存储介质中,所有这些组成了数字音频的产生过程(抽样、量化、编码三个过程)。下图为4 bit 采样深度的PCM数据量化示意图。

典型PCM格式时序图:

PCM格式分为长短帧,MODE A, MODE B格式,具体情况看相应datasheet手册。
长帧同步,FSYNC脉冲宽度等于1个Slot的长度。
短帧同步,FSYNC脉冲宽度等于1个BCLK周期长度。
Mode A: 数据在FSYNC有效后,BCLK的第2个上升沿有效(one clock delay)。
Mode B: 数据在FSYNC有效后,BCLK的第1个上升沿有效(no delay)。
3.3 I2S协议

I2S格式是pcm的特例,平时用的最多,用于传输两声道场景。
典型I2S格式时序图:

3.3 总结:

PCM音频接口传输单声道数据常用于通话场景其接口名称为PCM,如蓝牙模块通话时一般都是pcm接口,A2DP音频编码数据则是走串口。
常规产品一般只需要双声道则使用I2S接口。
对于需要多声道的产品则使用TDM传输多声道的数据。
PDM常用于数字麦(DM),也有用于播放的。
很多芯片带的"i2s"数字音频接口可以支持配置成pcm,i2s,tdm三种格式中的一种用的是同样的物理引脚。
对于一些高级的codec/dsp 一般都会有配套上位机和调试板,上位机有ui图形化配置很方便,调试的时候在soc端注册声卡成功后,把codec的i2c接口连接到调试板上,然后在上位机进行调试,这样可以避免频繁修改驱动代码编译烧录带来的时间消耗,也不用太过关注datasheet。对于没有上位机的codec,可以在shell命令用i2c-tool工具直接读写修改codec寄存器进行调试。

四、常见问题及调试手段

4.1 播放、录音声音不正常

确定SOC和Codec驱动设置的音频参数如,位宽,采样率,声道数,左右对齐,长短帧,AB格式等是否设置的一致,查看Soc和Codec的datasheet时序图。
使用逻辑分析仪抓数据:
对于播放:应用程序可以固定写0x1234,0x4567等,用逻辑分析仪抓数据设置对应格式进行解析看看数据是否一致。
对于录音:逻辑分析仪抓数据后设置对应格式解析数据后导出数据到电脑转成bin文件在电脑播放,
同时应用程序录音文件拷贝到电脑进行播放,对比。排除是codec还是soc端问题。


4.2 播放、录音断续卡顿

查看cpu loading,应用程序是否及时收发数据(如APP有其它耗时阻塞操作),驱动是否发生XRUN,等异常。优化应用程序,调整进程/线程优先级,调整period_size,period_count值。
示波器抓波形是否有干扰毛刺。
查看I2S,和DMA相关寄存器,Req,Ack是否配对一样,确定芯片内部相关模块是否发生异常XRUN。


4.3 播放、录音有杂音

引起杂音的问题很多,如下列举常用定位方法:
使用逻辑分析仪和示波器,先确定是硬件问题(模拟电路)还是软件问题(数字电路)。
确认时钟信号是否准确,检查 jitter 是否过大,比如,对于 HDA 音频, jitter 小于 0.5 ns。
确认时钟上是否有毛刺,特别是在边沿有效值判定范围电压内,如果出现毛刺,会被芯片识别为时 钟,导致时序出现问题。
确认 CODEC 电源和地 情况,CODEC 对电源噪声敏感,任何耦合进电源或地的噪声都将导致 CODEC性能下降,底噪增大,出现杂音。
硬件采用差分电路 抑制共模噪声。 检查硬件 PCB 布局,排查噪声来源。


4.4 播放、录音无声

逻辑分析仪抓波形是否正常,确定是否有数据。
检查功放,mic是否损坏。示波器检查codec是否有模拟信号输出。用信号发生器代替mic,或更换mic测试。
通过在软件各层dump数据确定问题在哪一层,如Android12就有权限管理导致应用程序录音无声问题。
直接使用tinyplay,tinycap,tinymix等调试工具验证。排除hal,framework,app问题。
查看驱动是否有出错日志,DMA是否正常产生中断,查看DAI(I2S PDM)相关状态寄存器是否异常。


4.5 播放POP音

检查音频链路上电时序。
Mute unmute机制是否合理。
pcm数据是否有突变,软件是否做了fade in,fade out,codec/dsp是否有硬件相关功能参数可以设置。


4.6 Codec常见初始化问题

i2c初始化失败,检查原理图,地址是否设置对了,datasheet上电时序要求,尝试降低i2c速率。
某些功能设置后不生效,可以dump寄存器看看是否和代码写入的一致,配置每个寄存器后加入一定延时。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/353994.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

hdfs文件系统增删查原理

目录 1、hdfs读取文件原理 1.1、读取流程图解 1.2、架构层面读取流程详解 1.3、源码层面读取流程详解 2、hdfs写入文件原理 2.1、写入流程图解 2.2、架构层面写入流程 2.3、源码层面写入流程 3、hdfs删除文件原理 3.1、删除文件图解 3.2、架构层面删除流程 3.3、源码…

【Java】已解决java.lang.UnsupportedOperationException异常

文章目录 问题背景可能出错的原因错误代码示例正确代码示例注意事项 已解决java.lang.UnsupportedOperationException异常 在Java编程中&#xff0c;java.lang.UnsupportedOperationException是一个运行时异常&#xff0c;通常表示尝试执行一个不支持的操作。这种异常经常发生…

Word2Vec基本实践

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目…

MATLAB入门知识

目录 原教程链接&#xff1a;数学建模清风老师《MATLAB教程新手入门篇》https://www.bilibili.com/video/BV1dN4y1Q7Kt/ 前言 历史记录 脚本文件&#xff08;.m&#xff09; Matlab帮助系统 注释 ans pi inf无穷大 -inf负无穷大 i j虚数单位 eps浮点相对精度 0/&a…

【AI】通义千问使用指南:让你快速上手,成为问题解决高手!

大家好&#xff0c;我是木头左。 近日&#xff0c;继文心一言和讯飞星火之后&#xff0c;阿里虽迟但到&#xff0c;直接宣布开源两款“通义千问”大模型。作为国内首个开源且可商用的人工智能大模型&#xff0c;这会给我们带来哪些变化呢&#xff1f; 如何申请阿里通义千问&am…

JupyterLab使用指南(六):JupyterLab的 Widget 控件

1. 什么是 Widget 控件 JupyterLab 中的 Widget 控件是一种交互式的小部件&#xff0c;可以用于创建动态的、响应用户输入的界面。通过使用 ipywidgets 库&#xff0c;用户可以在 Jupyter notebook 中创建滑块、按钮、文本框、选择器等控件&#xff0c;从而实现数据的交互式展…

springboot集成积木报表,怎么将平台用户信息传递到积木报表

springboot集成积木报表后怎么将平台用户信息传递到积木报表 起因是因为需要研究在积木报表做数据筛选的时候需要拿到系统当前登录用户信息做筛选新的模块 起因是因为需要研究在积木报表做数据筛选的时候需要拿到系统当前登录用户信息做筛选 官网有详细介绍怎么集成进去的&…

力扣每日一题 6/19 排序+动态规划

博客主页&#xff1a;誓则盟约系列专栏&#xff1a;IT竞赛 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 2713.矩阵中严格递增的单元格数【困难】 题目&#xff1a; 给你一个下标从…

爆赞!GitHub首本Python开发实战背记手册,标星果然百万名不虚传

Python (发音:[ paiθ(ə) n; (US) paiθɔn ] n. 蟒蛇&#xff0c;巨蛇 )&#xff0c;是一种面向对象的解释性的计算机程序设计语言&#xff0c;也是一种功能强大而完善的通用型语言&#xff0c;已经具有十多年的发展历史&#xff0c;成熟且稳定。Python 具有脚本语言中最丰富…

无问芯穹Qllm-Eval:制作多模型、多参数、多维度的量化方案

前言 近年来&#xff0c;大语言模型&#xff08;Large Models, LLMs&#xff09;受到学术界和工业界的广泛关注&#xff0c;得益于其在各种语言生成任务上的出色表现&#xff0c;大语言模型推动了各种人工智能应用&#xff08;例如ChatGPT、Copilot等&#xff09;的发展。然而…

list集合自定义排序

一、基本类型排序 1.list中只有数字或字符串 //升序排序 List<T> ,T为数字或字符串 Collections.sort(list); //降序排序 Collections.sort(list,Collections.reverseOrder());2.list中为对象 基于jdk.18 import lombok.Data;Data public class User {private int i…

Android网络性能监控方案 android线上性能监测

1 Handler消息机制 这里我不会完整的从Handler源码来分析Android的消息体系&#xff0c;而是从Handler自身的特性引申出线上卡顿监控的策略方案。 1.1 方案确认 首先当我们启动一个App的时候&#xff0c;是由AMS通知zygote进程fork出主进程&#xff0c;其中主进程的入口就是Ac…

linux环境编程基础学习

Shell编程&#xff1a; 相对的chmod -x xx.sh可以移除权限 想获取变量的值要掏点dollar&#xff08;&#xff04;&#xff09; 多位的话要加个花括号 运算&#xff1a;expr 运算时左右两边必须要加空格 *号多个含义必须加转义符 双引号可以加反单&#xff0c;但是发过来就不行 …

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA 的幸运游戏(100分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…

Idea连接GitLab的过程以及创建在gitlab中创建用户和群组

上期讲述了如何部署GitLab以及修复bug&#xff0c;这期我们讲述&#xff0c;如何连接idea。 首先安装gitlab插件 下载安装idea上并重启 配置ssh免密登录 使用管理员打开命令行输入&#xff1a;ssh-keygen -t rsa -C xxxaaa.com 到用户目录下.ssh查看id_rsa.pub文件 打开复制…

算法第六天:力扣第977题有序数组的平方

一、977.有序数组的平方的链接与题目描述 977. 有序数组的平方的链接如下所示&#xff1a;https://leetcode.cn/problems/squares-of-a-sorted-array/description/https://leetcode.cn/problems/squares-of-a-sorted-array/description/ 给你一个按 非递减顺序 排序的整数数组…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 部门组队编程(200分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…

ArcGIS for js 4.x FeatureLayer 点选查询

示例&#xff1a; 代码如下&#xff1a; <template><view class"map" id"mapView"></view></template><script setup> import "arcgis/core/assets/esri/themes/light/main.css"; import Map from "arcgis/…

没有名为 keras.preprocessing 的模块

估计是因为版本原因 我安装的是 3.3.3版本 >>> import keras >>> print(keras.__version__) 3.3.3 keras.preprocessing.image 将 keras.preprocessing.image 改为 from keras_preprocessing.image 之后报image_type啥的错误&#xff0c;后面查找之后…

使用vscode插件du-i18n处理前端项目国际化翻译多语言

前段时间我写了一篇关于项目国际化使用I18n组件的文章&#xff0c;Vue3 TS 使用国际化组件I18n&#xff0c;那个时候还没真正在项目中使用&#xff0c;需求排期还没有定&#xff0c;相当于是预研。 当时就看了一下大概怎么用&#xff0c;改了一个简单的页面&#xff0c;最近需…