椭圆的矩阵表示法
flyfish
1. 标准几何表示法
标准几何表示法是通过椭圆的几何定义来表示的:
x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 a2x2+b2y2=1其中, a a a 是椭圆的长半轴长度, b b b 是椭圆的短半轴长度。
2. 线性代数表示法
线性代数表示法是通过椭圆的二次型表示的:
x T Σ − 1 x = c \mathbf{x}^T \Sigma^{-1} \mathbf{x} = c xTΣ−1x=c其中, x \mathbf{x} x 是点的向量表示 ( x y ) \begin{pmatrix} x \\ y \end{pmatrix} (xy), Σ \Sigma Σ 是一个正定矩阵(协方差矩阵的逆), c c c 是一个常数。
推导两者之间的关系
我们通过具体推导来看这两者之间的关系:
假设我们有一个标准形式的椭圆方程:
x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 a2x2+b2y2=1
可以将其改写为矩阵形式:
( x y ) ( 1 a 2 0 0 1 b 2 ) ( x y ) = 1 \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{b^2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1 (xy)(a2100b21)(xy)=1在这里,矩阵 ( 1 a 2 0 0 1 b 2 ) \begin{pmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{b^2} \end{pmatrix} (a2100b21) 就是 Σ − 1 \Sigma^{-1} Σ−1,而常数 c = 1 c = 1 c=1。
因此,标准形式的椭圆方程可以被视为线性代数表示法的一种特例,其中:
Σ − 1 = ( 1 a 2 0 0 1 b 2 ) \Sigma^{-1} = \begin{pmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{b^2} \end{pmatrix} Σ−1=(a2100b21)
这也意味着:
Σ = ( a 2 0 0 b 2 ) \Sigma = \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} Σ=(a200b2)
更一般的情况
如果椭圆不是标准形式的(例如旋转过或者平移过的椭圆),其线性代数表示法中的矩阵 Σ \Sigma Σ 将不是对角矩阵,而是一个包含非零的非对角元素的矩阵。
1. 椭圆的几何定义
设椭圆的两个焦点分别为 F 1 ( − c , 0 ) F_1(-c, 0) F1(−c,0) 和 F 2 ( c , 0 ) F_2(c, 0) F2(c,0),椭圆上的任意一点 P ( x , y ) P(x, y) P(x,y) 满足以下条件:
P F 1 + P F 2 = 2 a PF_1 + PF_2 = 2a PF1+PF2=2a
其中, 2 a 2a 2a 是椭圆的长轴长度, a a a 是长半轴的长度。
2. 代入距离公式
根据距离公式,可以得到 P P P 到 F 1 F_1 F1 和 F 2 F_2 F2 的距离分别为:
P F 1 = ( x + c ) 2 + y 2 PF_1 = \sqrt{(x + c)^2 + y^2} PF1=(x+c)2+y2
P F 2 = ( x − c ) 2 + y 2 PF_2 = \sqrt{(x - c)^2 + y^2} PF2=(x−c)2+y2根据椭圆的定义,有:
( x + c ) 2 + y 2 + ( x − c ) 2 + y 2 = 2 a \sqrt{(x + c)^2 + y^2} + \sqrt{(x - c)^2 + y^2} = 2a (x+c)2+y2+(x−c)2+y2=2a
3. 消除根号
为了简化这个方程,我们首先将方程两边平方:
( ( x + c ) 2 + y 2 + ( x − c ) 2 + y 2 ) 2 = ( 2 a ) 2 \left( \sqrt{(x + c)^2 + y^2} + \sqrt{(x - c)^2 + y^2} \right)^2 = (2a)^2 ((x+c)2+y2+(x−c)2+y2)2=(2a)2展开左边:
( x + c ) 2 + y 2 + ( x − c ) 2 + y 2 + 2 ( ( x + c ) 2 + y 2 ) ( ( x − c ) 2 + y 2 ) = 4 a 2 (x + c)^2 + y^2 + (x - c)^2 + y^2 + 2 \sqrt{((x + c)^2 + y^2)((x - c)^2 + y^2)} = 4a^2 (x+c)2+y2+(x−c)2+y2+2((x+c)2+y2)((x−c)2+y2)=4a2
4. 凑平方差
我们先简化左边的前两项:
( x + c ) 2 + y 2 + ( x − c ) 2 + y 2 = x 2 + 2 x c + c 2 + y 2 + x 2 − 2 x c + c 2 + y 2 (x + c)^2 + y^2 + (x - c)^2 + y^2 = x^2 + 2xc + c^2 + y^2 + x^2 - 2xc + c^2 + y^2 (x+c)2+y2+(x−c)2+y2=x2+2xc+c2+y2+x2−2xc+c2+y2
= 2 x 2 + 2 y 2 + 2 c 2 = 2x^2 + 2y^2 + 2c^2 =2x2+2y2+2c2代入上面的方程得到:
2 x 2 + 2 y 2 + 2 c 2 + 2 ( ( x + c ) 2 + y 2 ) ( ( x − c ) 2 + y 2 ) = 4 a 2 2x^2 + 2y^2 + 2c^2 + 2 \sqrt{((x + c)^2 + y^2)((x - c)^2 + y^2)} = 4a^2 2x2+2y2+2c2+2((x+c)2+y2)((x−c)2+y2)=4a2移项得到:
2 ( ( x + c ) 2 + y 2 ) ( ( x − c ) 2 + y 2 ) = 4 a 2 − 2 x 2 − 2 y 2 − 2 c 2 2 \sqrt{((x + c)^2 + y^2)((x - c)^2 + y^2)} = 4a^2 - 2x^2 - 2y^2 - 2c^2 2((x+c)2+y2)((x−c)2+y2)=4a2−2x2−2y2−2c2
( ( x + c ) 2 + y 2 ) ( ( x − c ) 2 + y 2 ) = 2 a 2 − x 2 − y 2 − c 2 \sqrt{((x + c)^2 + y^2)((x - c)^2 + y^2)} = 2a^2 - x^2 - y^2 - c^2 ((x+c)2+y2)((x−c)2+y2)=2a2−x2−y2−c2
5. 消去根号
为了继续消去根号,我们再次平方两边:
( ( ( x + c ) 2 + y 2 ) ( ( x − c ) 2 + y 2 ) ) 2 = ( 2 a 2 − x 2 − y 2 − c 2 ) 2 \left( \sqrt{((x + c)^2 + y^2)((x - c)^2 + y^2)} \right)^2 = (2a^2 - x^2 - y^2 - c^2)^2 (((x+c)2+y2)((x−c)2+y2))2=(2a2−x2−y2−c2)2展开左边:
( ( x + c ) 2 + y 2 ) ( ( x − c ) 2 + y 2 ) = ( 2 a 2 − x 2 − y 2 − c 2 ) 2 ((x + c)^2 + y^2)((x - c)^2 + y^2) = (2a^2 - x^2 - y^2 - c^2)^2 ((x+c)2+y2)((x−c)2+y2)=(2a2−x2−y2−c2)2
6. 简化方程
左边的展开:
( x 2 + 2 x c + c 2 + y 2 ) ( x 2 − 2 x c + c 2 + y 2 ) (x^2 + 2xc + c^2 + y^2)(x^2 - 2xc + c^2 + y^2) (x2+2xc+c2+y2)(x2−2xc+c2+y2)
= ( x 2 + y 2 + c 2 ) 2 − ( 2 x c ) 2 = (x^2 + y^2 + c^2)^2 - (2xc)^2 =(x2+y2+c2)2−(2xc)2
= ( x 2 + y 2 + c 2 ) 2 − 4 x 2 c 2 = (x^2 + y^2 + c^2)^2 - 4x^2c^2 =(x2+y2+c2)2−4x2c2右边的展开:
( 2 a 2 − x 2 − y 2 − c 2 ) 2 (2a^2 - x^2 - y^2 - c^2)^2 (2a2−x2−y2−c2)2
= 4 a 4 − 4 a 2 ( x 2 + y 2 + c 2 ) + ( x 2 + y 2 + c 2 ) 2 = 4a^4 - 4a^2(x^2 + y^2 + c^2) + (x^2 + y^2 + c^2)^2 =4a4−4a2(x2+y2+c2)+(x2+y2+c2)2令左边和右边相等:
( x 2 + y 2 + c 2 ) 2 − 4 x 2 c 2 = 4 a 4 − 4 a 2 ( x 2 + y 2 + c 2 ) + ( x 2 + y 2 + c 2 ) 2 (x^2 + y^2 + c^2)^2 - 4x^2c^2 = 4a^4 - 4a^2(x^2 + y^2 + c^2) + (x^2 + y^2 + c^2)^2 (x2+y2+c2)2−4x2c2=4a4−4a2(x2+y2+c2)+(x2+y2+c2)2相消掉相同项后:
− 4 x 2 c 2 = 4 a 4 − 4 a 2 ( x 2 + y 2 + c 2 ) - 4x^2c^2 = 4a^4 - 4a^2(x^2 + y^2 + c^2) −4x2c2=4a4−4a2(x2+y2+c2)
x 2 c 2 = a 2 ( x 2 + y 2 + c 2 ) − a 4 x^2c^2 = a^2(x^2 + y^2 + c^2) - a^4 x2c2=a2(x2+y2+c2)−a4由于 c 2 = a 2 − b 2 c^2 = a^2 - b^2 c2=a2−b2,我们将其代入上式中:
x 2 ( a 2 − b 2 ) = a 2 ( x 2 + y 2 + ( a 2 − b 2 ) ) − a 4 x^2(a^2 - b^2) = a^2(x^2 + y^2 + (a^2 - b^2)) - a^4 x2(a2−b2)=a2(x2+y2+(a2−b2))−a4
x 2 a 2 − x 2 b 2 = a 2 x 2 + a 2 y 2 + a 4 − a 2 b 2 − a 4 x^2a^2 - x^2b^2 = a^2x^2 + a^2y^2 + a^4 - a^2b^2 - a^4 x2a2−x2b2=a2x2+a2y2+a4−a2b2−a4
x 2 a 2 − x 2 b 2 = a 2 x 2 + a 2 y 2 − a 2 b 2 x^2a^2 - x^2b^2 = a^2x^2 + a^2y^2 - a^2b^2 x2a2−x2b2=a2x2+a2y2−a2b2整理后得到:
− x 2 b 2 = a 2 y 2 − a 2 b 2 -x^2b^2 = a^2y^2 - a^2b^2 −x2b2=a2y2−a2b2
x 2 b 2 = a 2 b 2 − a 2 y 2 x^2b^2 = a^2b^2 - a^2y^2 x2b2=a2b2−a2y2
x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 a2x2+b2y2=1
最终的标准椭圆方程
x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 a2x2+b2y2=1