探索图神经网络(GNN):使用Python实现你的GNN模型

一、引言

图神经网络(Graph Neural Network, GNN)作为近年来机器学习和深度学习领域的热门话题,正逐渐吸引越来越多的研究者和开发者的关注。GNN能够处理图结构数据,在社交网络分析、推荐系统、化学分子结构预测等领域有着广泛的应用。本文将带你一步一步使用Python实现一个基本的图神经网络模型,并帮助你理解相关的核心概念和技术细节。

二、图神经网络的基础知识

图神经网络(GNN)作为一种新兴的深度学习模型,在处理图结构数据方面展现出了巨大的潜力。为了更好地理解GNN的工作原理和应用场景,下面将详细介绍图神经网络的基础知识,包括图的基本概念、GNN的核心思想以及GNN的工作机制。

1. 图的基本概念

在讨论图神经网络之前,首先需要了解图的基本概念。图是一种数学结构,由节点(vertices)和边(edges)组成,用于描述实体及其关系。图可以表示为 𝐺=(𝑉,𝐸)G=(V,E),其中 𝑉V 表示节点集合,𝐸E 表示边集合。

  • 节点(Node):图中的基本单元,代表实体。例如,在社交网络中,节点可以表示用户。
  • 边(Edge):连接节点的线,表示节点之间的关系或连接。例如,在社交网络中,边可以表示用户之间的好友关系。
  • 邻居节点(Neighbor Node):与某个节点直接相连的节点。例如,用户A的邻居节点就是与用户A有直接关系的其他用户。
  • 特征(Feature):节点或边的属性信息。例如,用户节点的特征可以是用户的年龄、性别、兴趣等。

2. GNN的核心思想

图神经网络的核心思想是通过迭代更新节点的表示(embedding),使得每个节点能够聚合来自其邻居节点的信息,从而更好地捕捉图结构信息。这种迭代过程通常包括以下几个步骤:

  • 消息传递(Message Passing):每个节点向其邻居节点发送消息,传递自身的特征信息。
  • 消息聚合(Message Aggregation):每个节点从其邻居节点接收消息,并将这些消息进行聚合。常见的聚合操作包括求和(sum)、平均(mean)和最大(max)等。
  • 节点更新(Node Update):每个节点根据聚合后的邻居节点信息和自身的信息,更新自身的表示。这通常通过一个神经网络层来实现,例如全连接层或图卷积层。

3. GNN的工作机制

为了更具体地理解GNN的工作机制,我们以图卷积网络(Graph Convolutional Network, GCN)为例,介绍GNN的具体操作。

3.1 图卷积网络(GCN)

图卷积网络是GNN的经典模型之一,通过图卷积操作来更新节点的表示。其基本公式如下:

其中:

  • 𝐻(𝑙)H(l) 表示第 𝑙l 层的节点表示矩阵,每行对应一个节点的表示。
  • 𝐴^A^ 表示归一化的图邻接矩阵。
  • 𝑊(𝑙)W(l) 表示第 𝑙l 层的权重矩阵。
  • 𝜎σ 表示非线性激活函数,如ReLU。

通过上述公式,GCN能够将邻居节点的信息聚合到中心节点上,并通过多层图卷积逐层更新节点表示。

3.2 图注意力网络(GAT)

图注意力网络通过引入注意力机制,能够自适应地学习每个邻居节点对中心节点的重要性,从而更灵活地捕捉图结构信息。GAT的基本操作如下:

其中:

  • ℎ𝑖′hi′​ 表示节点 𝑖i 的更新表示。
  • 𝑁(𝑖)N(i) 表示节点 𝑖i 的邻居节点集合。
  • 𝛼𝑖𝑗αij​ 表示节点 𝑖i 和节点 𝑗j 之间的注意力系数,表示邻居节点 𝑗j 对节点 𝑖i 的重要性。
  • 𝑊W 表示可训练的权重矩阵。

注意力系数 𝛼𝑖𝑗αij​ 通常通过一个可训练的注意力机制来计算:

其中 𝑎a 是可训练的注意力向量,∣∣∣∣ 表示向量的拼接操作。

4. GNN的训练和优化

图神经网络的训练过程与传统的神经网络类似,通常包括以下几个步骤:

  • 定义损失函数(Loss Function):常用的损失函数包括交叉熵损失(用于分类任务)和均方误差损失(用于回归任务)。
  • 选择优化器(Optimizer):常用的优化器包括SGD和Adam。
  • 反向传播(Backpropagation):通过计算损失函数对模型参数的梯度,更新模型参数。

在训练过程中,GNN会通过多次迭代,不断优化模型参数,使得模型在训练集上的表现逐渐提升。同时,可以通过验证集评估模型的泛化能力,防止过拟合。

5. 图神经网络的优势

图神经网络在处理图结构数据方面具有独特的优势:

  • 捕捉节点关系:GNN能够有效捕捉节点之间的复杂关系,这是传统神经网络无法实现的。
  • 灵活性强:GNN可以处理不同类型和大小的图结构数据,适应性强。
  • 应用广泛:GNN在社交网络、推荐系统、化学分子预测等领域有着广泛的应用前景。

通过上述介绍,相信你对图神经网络的基础知识有了更深入的理解。在接下来的部分,我们将介绍主要的图神经网络模型,并通过实例展示如何使用Python实现这些模型。

三、主要的图神经网络模型

在前一部分中,我们详细介绍了图神经网络(GNN)的基础知识。接下来,我们将探讨几种主要的图神经网络模型,并理解它们各自的特点和优势。这些模型包括图卷积网络(GCN)、图注意力网络(GAT)、图自编码器(GAE)、图同构网络(GIN)和图生成对抗网络(Graph GAN)。

1. 图卷积网络(GCN)

图卷积网络是最早提出并被广泛应用的GNN模型之一。GCN通过卷积操作将邻居节点的信息聚合到中心节点上,从而学习节点的表示。其核心思想是将传统卷积神经网络(CNN)的卷积操作扩展到图结构数据上。

GCN的基本公式

GCN的基本公式如下:

其中:

  • 𝐻(𝑙)H(l) 表示第 𝑙l 层的节点表示矩阵,每行对应一个节点的表示。
  • 𝐴^A^ 表示归一化的图邻接矩阵。
  • 𝑊(𝑙)W(l) 表示第 𝑙l 层的权重矩阵。
  • 𝜎σ 表示非线性激活函数,如ReLU。

通过上述公式,GCN能够将邻居节点的信息聚合到中心节点上,并通过多层图卷积逐层更新节点表示。

示例代码:

python

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.pytorch import GraphConvclass GCN(nn.Module):def __init__(self, in_feats, hidden_feats, out_feats):super(GCN, self).__init__()self.conv1 = GraphConv(in_feats, hidden_feats)self.conv2 = GraphConv(hidden_feats, out_feats)def forward(self, g, in_feat):h = self.conv1(g, in_feat)h = F.relu(h)h = self.conv2(g, h)return h# 示例代码
# 加载图数据和特征
graph = ...  # 你的图数据
features = ...  # 节点特征
in_feats = features.shape[1]
hidden_feats = 16
out_feats = ...  # 类别数量# 实例化和前向传播
model = GCN(in_feats, hidden_feats, out_feats)
logits = model(graph, features)

2. 图注意力网络(GAT)

图注意力网络通过引入注意力机制,自适应地学习每个邻居节点对中心节点的重要性,从而更灵活地捕捉图结构信息。GAT能够为每个节点分配不同的权重,使得信息聚合过程更加精细。

GAT的基本公式

GAT的基本公式如下:

其中:

  • ℎ𝑖′hi′​ 表示节点 𝑖i 的更新表示。
  • 𝑁(𝑖)N(i) 表示节点 𝑖i 的邻居节点集合。
  • 𝛼𝑖𝑗αij​ 表示节点 𝑖i 和节点 𝑗j 之间的注意力系数,表示邻居节点 𝑗j 对节点 𝑖i 的重要性。
  • 𝑊W 表示可训练的权重矩阵。

注意力系数 𝛼𝑖𝑗αij​ 通常通过一个可训练的注意力机制来计算:

其中 𝑎a 是可训练的注意力向量,∣∣∣∣ 表示向量的拼接操作。

示例代码:

python

from dgl.nn.pytorch import GATConvclass GAT(nn.Module):def __init__(self, in_feats, hidden_feats, out_feats, num_heads):super(GAT, self).__init__()self.gat1 = GATConv(in_feats, hidden_feats, num_heads)self.gat2 = GATConv(hidden_feats * num_heads, out_feats, 1)def forward(self, g, in_feat):h = self.gat1(g, in_feat)h = F.elu(h)h = self.gat2(g, h)return h# 示例代码
# 加载图数据和特征
graph = ...  # 你的图数据
features = ...  # 节点特征
in_feats = features.shape[1]
hidden_feats = 16
out_feats = ...  # 类别数量
num_heads = 8# 实例化和前向传播
model = GAT(in_feats, hidden_feats, out_feats, num_heads)
logits = model(graph, features)

3. 图自编码器(GAE)

图自编码器是一种用于图数据的无监督学习模型。GAE通过编码器和解码器结构,学习节点的低维表示,并重构原始图结构。GAE在节点表示学习和图生成任务中表现出色。

GAE的基本结构

GAE由编码器和解码器两部分组成:

  • 编码器:将原始图数据编码为低维表示。通常使用GCN或其他GNN模型作为编码器。
  • 解码器:从低维表示重构图结构。常见的解码方法包括内积解码和多层感知机(MLP)解码。

编码器的输出表示为 𝑍Z,解码器的输出表示为 𝐴^A^,重构损失函数通常为:

其中 𝐴A 表示原始图的邻接矩阵,𝐴^A^ 表示重构的邻接矩阵。

示例代码:

python

from dgl.nn.pytorch import GraphConvclass GAE(nn.Module):def __init__(self, in_feats, hidden_feats):super(GAE, self).__init__()self.encoder = GraphConv(in_feats, hidden_feats)self.decoder = GraphConv(hidden_feats, in_feats)def forward(self, g, in_feat):h = self.encoder(g, in_feat)h = F.relu(h)h = self.decoder(g, h)return h# 示例代码
# 加载图数据和特征
graph = ...  # 你的图数据
features = ...  # 节点特征
in_feats = features.shape[1]
hidden_feats = 16# 实例化和前向传播
model = GAE(in_feats, hidden_feats)
reconstructed_features = model(graph, features)

4. 图同构网络(GIN)

图同构网络旨在提高GNN在图同构测试中的表达能力。GIN通过设计特定的聚合函数,使得其在判别图同构性方面具有更强的理论保证。GIN的模型结构简单,但在许多任务上表现优异。

GIN的基本公式

GIN的基本公式如下:

其中:

  • ℎ𝑖(𝑘)hi(k)​ 表示第 𝑘k 层中节点 𝑖i 的表示。
  • MLP(𝑘)MLP(k) 表示第 𝑘k 层的多层感知机。
  • 𝜖(𝑘)ϵ(k) 是一个可学习或固定的参数,用于调节节点自身的信息和邻居节点信息的比例。

GIN通过设计特定的聚合函数,使得其在判别图同构性方面具有更强的理论保证,确保节点表示的唯一性,从而在图分类任务中表现优越。

python

import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.nn.pytorch import GraphConvclass GIN(nn.Module):def __init__(self, in_feats, hidden_feats, out_feats):super(GIN, self).__init__()self.conv1 = GraphConv(in_feats, hidden_feats, aggregator_type='sum')self.conv2 = GraphConv(hidden_feats, out_feats, aggregator_type='sum')self.eps = nn.Parameter(torch.zeros(1))def forward(self, g, in_feat):h = (1 + self.eps) * in_feat + self.conv1(g, in_feat)h = F.relu(h)h = (1 + self.eps) * h + self.conv2(g, h)return h# 示例代码
# 加载图数据和特征
graph = ...  # 你的图数据
features = ...  # 节点特征
in_feats = features.shape[1]
hidden_feats = 16
out_feats = ...  # 类别数量# 实例化和前向传播
model = GIN(in_feats, hidden_feats, out_feats)
logits = model(graph, features)

5. 图生成对抗网络(Graph GAN)

图生成对抗网络将生成对抗网络(GAN)引入到图数据中,用于生成逼真的图结构。Graph GAN包括一个生成器和一个判别器,生成器用于生成新的图结构,判别器用于判别图结构的真实性。

Graph GAN的基本结构

Graph GAN由生成器和判别器两部分组成:

  • 生成器:负责生成新的图结构或节点表示。通常使用随机噪声作为输入,通过一系列变换生成图数据。
  • 判别器:负责判别输入的图结构或节点表示是真实的还是生成的。判别器通常使用一个二分类器来进行判断。

生成器和判别器之间通过对抗训练进行优化,生成器试图生成逼真的图数据以欺骗判别器,而判别器则不断提高其判别能力。

Graph GAN的损失函数

Graph GAN的损失函数包括生成器损失和判别器损失:

  • 生成器损失

其中 𝐺G 表示生成器,𝐷D 表示判别器,𝑧z 表示随机噪声。

  • 判别器损失

其中 𝑥x 表示真实图数据,𝑝𝑑𝑎𝑡𝑎(𝑥)pdata​(x) 表示真实数据的分布。

通过对抗训练,Graph GAN能够生成高质量的图数据,并在图生成和表示学习任务中取得优异的效果。

示例代码:

python

import torch
import torch.nn as nn
import torch.optim as optimclass GraphGANGenerator(nn.Module):def __init__(self, in_feats, hidden_feats, out_feats):super(GraphGANGenerator, self).__init__()self.fc1 = nn.Linear(in_feats, hidden_feats)self.fc2 = nn.Linear(hidden_feats, out_feats)def forward(self, z):h = F.relu(self.fc1(z))return torch.sigmoid(self.fc2(h))class GraphGANDiscriminator(nn.Module):def __init__(self, in_feats, hidden_feats, out_feats):super(GraphGANDiscriminator, self).__init__()self.fc1 = nn.Linear(in_feats, hidden_feats)self.fc2 = nn.Linear(hidden_feats, out_feats)def forward(self, x):h = F.relu(self.fc1(x))return torch.sigmoid(self.fc2(h))# 示例代码
# 加载图数据和特征
z = torch.randn((100, 16))  # 随机噪声
real_data = ...  # 真实图数据# 实例化模型
gen = GraphGANGenerator(16, 32, 16)
disc = GraphGANDiscriminator(16, 32, 1)# 生成假数据
fake_data = gen(z)# 判别真假数据
real_scores = disc(real_data)
fake_scores = disc(fake_data)

以上示例代码展示了如何实现和使用这五种主要的图神经网络模型。每种模型都有其独特的结构和适用场景,可以根据具体需求选择合适的模型。

以上介绍了几种主要的图神经网络模型,包括图卷积网络(GCN)、图注意力网络(GAT)、图自编码器(GAE)、图同构网络(GIN)和图生成对抗网络(Graph GAN)。每种模型都有其独特的结构和优势,适用于不同的图数据处理任务。理解这些模型的原理和应用场景,有助于我们更好地利用图神经网络解决复杂的图数据问题。

四、图神经网络的应用场景

图神经网络(GNN)作为一种强大的深度学习模型,能够处理图结构数据,因而在多个领域展现出了广泛的应用前景。以下将详细介绍GNN在社交网络分析、推荐系统、化学分子结构预测、交通网络优化和知识图谱等方面的应用。

1. 社交网络分析

社交网络是典型的图结构数据,其中用户可以看作是节点,用户之间的关系(如好友关系、关注关系等)可以看作是边。GNN在社交网络分析中的应用包括:

  • 节点分类:通过GNN,可以根据用户的特征和其邻居的特征,预测用户的某些属性,如兴趣爱好、性别、年龄等。这对于精准广告投放、个性化推荐等应用非常重要。

  • 社区发现:GNN可以用于识别社交网络中的社区结构,将具有相似兴趣或关系紧密的用户聚集在一起。这对于社交媒体平台的用户体验优化和信息传播分析具有重要意义。

  • 链接预测:GNN可以用于预测社交网络中可能出现的新关系,例如预测两个用户是否会成为朋友。这对于推荐系统中的好友推荐功能非常有用。        

2. 推荐系统

推荐系统的核心任务是为用户推荐感兴趣的物品。GNN在推荐系统中的应用包括:

  • 用户-物品图:通过构建用户和物品的二部图,利用GNN可以更好地捕捉用户与物品之间的复杂关系,从而提高推荐的准确性和个性化。例如,用户-物品图中的节点可以表示用户和物品,边可以表示用户对物品的评分或购买行为。

  • 图嵌入学习:通过GNN,可以学习用户和物品的低维嵌入表示,这些表示能够捕捉用户和物品之间的隐含关系,从而用于推荐算法中,提高推荐效果。

  • 动态推荐:GNN可以处理动态图数据,通过对时间维度上的信息进行建模,实现对用户兴趣变化的捕捉,从而提供更加个性化和实时的推荐。        

3. 化学分子结构预测

化学分子可以看作是图结构,其中原子是节点,化学键是边。GNN在化学和生物领域有着广泛的应用,包括:

  • 分子属性预测:通过GNN,可以预测化学分子的物理化学性质,如溶解度、稳定性、毒性等。这对于新药研发和材料科学研究具有重要意义。

  • 药物活性预测:GNN可以用于预测某种化合物是否具有特定的生物活性,从而加速药物研发过程。例如,通过学习已知药物分子与目标蛋白的相互作用模式,GNN可以预测新化合物的潜在药物活性。

  • 分子生成:通过生成对抗网络(GAN)与GNN的结合,可以生成具有特定性质的分子结构。这对于设计新药分子和材料具有重要应用前景。        

4. 交通网络优化

交通网络是一个典型的图结构数据,其中道路交叉口和道路段分别表示为节点和边。GNN在交通网络中的应用包括:

  • 交通流量预测:通过GNN,可以预测交通网络中各个路段的流量变化。这对于交通管理部门进行拥堵预测和优化调度具有重要意义。

  • 路径规划:GNN可以用于寻找最优路径,考虑交通状况和道路连接情况,提供更加智能和高效的路径规划方案。

  • 事故检测:通过对交通网络的实时数据进行分析,GNN可以用于检测异常情况,如交通事故、道路封闭等,并及时提供预警和应对方案。        

5. 知识图谱

知识图谱是一种用于表示实体及其关系的图结构数据。GNN在知识图谱中的应用包括:

  • 实体链接:通过GNN,可以将不同数据源中的相同实体进行链接和融合,从而构建更加全面和准确的知识图谱。

  • 关系预测:GNN可以用于预测知识图谱中实体之间的潜在关系。例如,在医学知识图谱中,可以预测疾病与症状、药物与疾病之间的关系,从而辅助医学研究和诊断。

  • 问答系统:基于知识图谱的问答系统通过GNN进行知识推理和答案生成,提高问答的准确性和智能性。        

图神经网络在处理图结构数据方面展现出了独特的优势,广泛应用于社交网络分析、推荐系统、化学分子结构预测、交通网络优化和知识图谱等多个领域。通过深入了解和应用GNN,可以解决许多复杂的数据分析和预测问题,推动各个领域的技术进步和创新。

五、总结

本文介绍了如何使用Python和DGL库实现一个简单的图神经网络模型,并阐述了图神经网络的基础知识、主要模型以及应用场景。通过本文的学习,你应该能够初步了解GNN的基本原理和实现方法,并尝试在实际项目中应用GNN。

图神经网络是一个强大且灵活的工具,它在处理图结构数据方面有着独特的优势。希望这篇文章能帮助你开启GNN的探索之旅。如果你对图神经网络感兴趣,可以进一步深入学习更复杂的模型和应用,如GraphSAGE、GAT等。祝你在GNN的世界里有所收获!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/355811.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二本(三本)毕业、4年职场牛马----分享给计科专业男女孩或被迷茫、焦虑困扰的大学生们的一些感悟

背景 我不是一个贩卖焦虑的博主,博主二本(三本升上来)毕业,当年正逢2020疫情,一战考研失败,家里蹲到没有实习。靠关系进第一家公司做Python后端,然后第一家公司因为疫情黄了。二战考研又失败&a…

eNSP学习——OSPF在帧中继网络中的配置

目录 主要命令 原理概述 实验目的 实验场景 实验拓扑 实验编址 实验步骤 1、基本配置 2、在帧中继上搭建OSPF网络 主要命令 //检查帧中继的虚电路状态 display fr pvc-info//检查帧中继的映射表 display fr map-info//手工指定OSPF邻居,采用单播方式发送报文 [R1]os…

课程管理系统

摘 要 在大学里,课程管理是一件非常重要的工作,教学工作人员每天都要与海量的数据和信息打交道。确保数据的精确度和完整程度,影响着每一位同学的学习、生活和各种活动的正常展开,更合理的信息管理也为高校工作的正规化运行和规范…

QThread 与QObject::moveToThread在UI中的应用

1. QThread的两种用法 第一种用法就是继承QThread,然后覆写 virtual void run(), 这种用法的缺点是不能利用信号槽机制。 第二种用法就是创建一个线程,创建一个对象,再将对象moveToThread, 这种可以充分利用信号槽机制&#xff…

Docker:Harbor

目录 一、Harbor介绍 二、安装 Harbor 2.1 环境准备 2.2下载 Harbor 3.3 修改配置(可选) 3.4 启动 Harbor 3.5访问 Harbor 三、使用 Harbor 3.1 管理Harbor 一、Harbor介绍 Docker Harbor 是由 VMware 公司开源的一款企业级的 Docker Registry …

基于JSP技术的个性化影片推荐系统

开头语:你好呀,我是计算机学长猫哥!如果有相关需求,文末可以找到我的联系方式。 开发语言:Java 数据库:MySQL 技术:JSPServlet 工具:MyEclipse、Tomcat、MySQL 系统展示 首页 …

kafka的基本模型

kafka官网 线程和线程之间的数据交互 在jvm里不同的线程有自己的栈内存,但彼此之间交互可以在共享的内存中进行,即堆内存,堆内存会将这些消息放到队列中,具体实现jvm见,栈内存各自维护,堆内存大家共享 进…

DLS平台:美联储松绑预期升温,金价飙升至2365美元

摘要 美联储鹰派官员古尔斯比对降息态度有所松动,导致金价一度升至2365美元。市场对美联储未来的货币政策预期有所改变,黄金作为避险资产的吸引力增强。本文将详细分析美联储官员态度变化对金价的影响、当前市场对黄金的预期及其未来走势。 美联储官员态…

Pyqt QCustomPlot 简介、安装与实用代码示例(二)

目录 前言实用代码示例彩色图演示散点像素图演示实时数据演示多轴演示对数轴演示 结语 所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 nixgnauhcuy’s blog! 如需转载,请标明出处! 完整代码我已经上传到…

第 402 场 LeetCode 周赛题解

A 构成整天的下标对数目 I 计数&#xff1a;遍历 h o u r s hours hours &#xff0c;记录 h o u r s [ i ] % 24 hours[i]\%24 hours[i]%24 的出现次数 class Solution {public:long long countCompleteDayPairs(vector<int>& hours) {vector<int> cnt(24);…

【小白专用 已验证24.6.18】C# SqlSugar操作MySQL数据库实现增删改查

【小白专用24.6.18】C# SqlSugar&#xff1a;连接数据库实现简单的&#xff0c;增、删、改、查-CSDN博客 SqlSugar .Net ORM 5.X 官网 、文档、教程 - SqlSugar 5x - .NET果糖网 SqlSugar项目创建 通过NuGet包管理器搜索SqlSugar&#xff08;MySql还要安装MySql.Data、Newton…

如何计算 GPT 的 Tokens 数量?

基本介绍 随着人工智能大模型技术的迅速发展&#xff0c;一种创新的计费模式正在逐渐普及&#xff0c;即以“令牌”&#xff08;Token&#xff09;作为衡量使用成本的单位。那么&#xff0c;究竟什么是Token呢&#xff1f; Token 是一种将自然语言文本转化为计算机可以理解的…

【Linux】进程信号2——阻塞信号,捕捉信号

1.阻塞信号 1.1. 信号其他相关常见概念 在开始内容之前&#xff0c;先介绍一些信号的专业名词&#xff1a; 实际执行信号的处理动作称为信号递达&#xff08;Delivery&#xff09;信号从产生到递达之间的状态&#xff0c;称为信号未决&#xff08;Pending&#xff09;&#…

【秋招刷题打卡】Day01-自定义排序

Day01-自定排序 前言 给大家推荐一下咱们的 陪伴打卡小屋 知识星球啦&#xff0c;详细介绍 >笔试刷题陪伴小屋-打卡赢价值丰厚奖励 < ⏰小屋将在每日上午发放打卡题目&#xff0c;包括&#xff1a; 一道该算法的模版题 (主要以力扣&#xff0c;牛客&#xff0c;acwin…

【Git】 -- Part1 -- 基础操作

1. Git简介 Git 是一个开源的分布式版本控制系统&#xff0c;由 Linus Torvalds 于 2005 年开发&#xff0c;主要用于源代码管理。Git 允许多名开发者共同合作处理同一个项目&#xff0c;跟踪每个文件的修改&#xff0c;并且在必要时回滚到之前的版本。 Linus Torvalds是Linux…

CAC 2.0融合智谱AI大模型,邮件安全新升级

在数字化时代&#xff0c;电子邮件的安全问题日益成为关注的焦点。Coremail CACTER邮件安全人工智能实验室&#xff08;以下简称“CACTER AI实验室”&#xff09;凭借其在邮件安全领域的深入研究与创新实践&#xff0c;不断推动技术进步。 此前&#xff0c;CACTER AI实验室已获…

Python基础教程(二十八):pip模块

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…

Go语言开发框架GoFly已集成数据可视化大屏开发功能,让开发者只专注业务开发,本文指导大家如何使用

前言 框架提供数据大屏开发基础&#xff0c;是考虑当前市场软件应用有一大部分是需要把业务数据做出大屏&#xff0c;很多政府项目对大屏需求特别高&#xff0c;还有生产企业项目也对大屏有需求&#xff0c;没有提供基础规范的后台框架&#xff0c;在开发大屏需要很多时间去基…

Ubuntu server 24 (Linux) 安装部署samba服务器 共享文件目录 windows访问

1 安装 sudo apt update sudo apt-get install samba #启动服务 sudo systemctl restart smbd.service sudo systemctl enable smbd.service #查看服务 2 创建用户 #创建系统用户 sudo useradd test2 #配置用户密码 sudo smbpasswd -a test2 # smbpasswd: -a添加用户 …

STM32学习笔记(六)--引脚重映射详解

STM32F103C8T6引脚定义&#xff1a; 在STM32微控制器中&#xff0c;外设引脚的复用功能&#xff08;Alternate Function&#xff0c;AF&#xff09;有时会出现冲突&#xff0c;例如当USART2_CTS和TIM2_CH1同时需要使用相同的引脚时。此时&#xff0c;可以通过引脚重映射功能&am…