【刷力扣】23. 合并 K 个升序链表(dummy节点技巧 + 分治思维 + 优先队列)

目录

  • 一、合并升序链表问题
  • 二、题目:[21. 合并两个有序链表](https://leetcode.cn/problems/merge-two-sorted-lists/description/)
    • 1、掌握dummy节点的技巧
  • 三、题目:[23. 合并 K 个升序链表](https://leetcode.cn/problems/merge-k-sorted-lists/description/)
    • 1、分治思维
      • 1.1 插曲
      • 1.2 [代码](https://leetcode.cn/problems/merge-k-sorted-lists/solutions/2811116/jiang-kge-sheng-xu-lian-biao-zhuan-cheng-yffa/)
      • 1.3 分析这种解法的时空复杂度
        • 1.3.1 时间复杂度
        • 1.3.2 空间复杂度
    • 2、优先队列
      • 2.1 PriorityQueue的使用
      • 2.2 本题代码
        • 2.2.1 进一步优化
      • 2.3 分析这种解法的时空复杂度
        • 2.3.1 时间复杂度
        • 2.3.2 空间复杂度

一、合并升序链表问题

  • 合并升序链表问题是链表专题的经典问题。
    • 我们需要掌握:dummy节点的技巧
  • 23. 合并 K 个升序链表在21. 合并两个有序链表基础上,还需要掌握如下技能:
    • (1)分治思维。我们将合并K个升序链表转化为多次合并2个升序链表。归并排序也用到了分治思维。
    • (2)优先队列(小根堆/大根堆)。维护一个序列的最小/大值。

二、题目:21. 合并两个有序链表

1、掌握dummy节点的技巧

  • 在创建新链表时,定义一个dummy节点,在如下代码中,res便是dummy节点,因此,最后答案是:return res.next;
/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeTwoLists(ListNode list1, ListNode list2) {if (list1 == null) {return list2;}if (list2 == null) {return list1;}ListNode p1 = list1, p2 = list2, res = new ListNode(), p = res;while (p1 != null && p2 != null) {if (p1.val <= p2.val) {p.next = p1;p1 = p1.next;} else {p.next = p2;p2 = p2.next;}p = p.next;}if (p1 == null) {p.next = p2;}if (p2 == null) {p.next = p1;}return res.next;}
}

三、题目:23. 合并 K 个升序链表

1、分治思维

1.1 插曲

  • 看到这道题,首先想到的是合并2个升序链表。p1指向链表list1,p2指向链表list2。关键步骤是:
if (p1.val <= p2.val) {...
} else {...
}
  • 很显然,k个升序链表需要想其他办法去求最小值对应的节点。好久没刷算法了。不记得咋求了…(忘记优先队列了,要补上这个技术点)
  • 但想到了归并排序。所以,可以将k个升序链表转成2个升序链表的问题。

1.2 代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) return null;return merge(lists, 0, lists.length - 1);}private ListNode merge(ListNode[] lists, int i, int j) {if (i == j) {return lists[i];}if (j - i == 1) {// 两条链表的合并return merge2Lists(lists[i], lists[j]);}int mid = ((j - i) >> 1) + i;ListNode leftList = merge(lists, i, mid);ListNode rightList = merge(lists, mid + 1, j);// 两条链表的合并return merge2Lists(leftList, rightList);}private ListNode merge2Lists(ListNode l1, ListNode l2) {ListNode dummy = new ListNode(), p = dummy;while (l1 != null && l2 != null) {if (l1.val <= l2.val) {p.next = l1;l1 = l1.next;} else {p.next = l2;l2 = l2.next;}p = p.next;}if (l1 == null) {p.next = l2;}if (l2 == null) {p.next = l1;}return dummy.next;}
}

1.3 分析这种解法的时空复杂度

1.3.1 时间复杂度
  • 图示:4个链表,两两合并的过程。为便于分析,假设每个链表的节点树为a。
    在这里插入图片描述
  • i = 1:有 k 2 \tfrac{k}{2} 2k对合并,每对合并涉及2a个节点。
  • i = 2:有 k 4 \tfrac{k}{4} 4k对合并,每对合并涉及4a个节点。
  • 每一层的计算: k 2 i \tfrac{k}{2 ^ i} 2ik * 2 i ∗ a 2^i *a 2ia = k ∗ a k * a ka
  • 层数为树高:叶子节点为k(k个链表),树高为logk。
  • 因此,时间复杂度为:O(aklogk)。k个链表一共有n个节点,所以,a简化为 n k \tfrac{n}{k} kn时间复杂度简化为:O(nlogk)
1.3.2 空间复杂度
  • 递归调用,栈深度为树高,因此,空间复杂度为O(logk)

2、优先队列

  • 给定一组元素,使得队列的头是最小/大元素。

2.1 PriorityQueue的使用

public class Main {public static void main(String[] args) {ListNode listNode1 = new ListNode(2);ListNode listNode2 = new ListNode(1);listNode1.setNext(listNode2);// 小根堆Queue<ListNode> queue = new PriorityQueue<>(Comparator.comparingInt(ListNode::getVal));// 将指定的元素插入到此优先级队列中。(相当于offer()方法)queue.add(listNode1);queue.add(listNode2);while (!queue.isEmpty()) {// 检索并删除此队列的头,如果此队列为空,则返回 null 。System.out.println(queue.poll());}}
}/*
ListNode(val=1, next=null) 
ListNode(val=2, next=ListNode(val=1, next=null))
*/
  • 既然要对元素进行排序,要么元素的类实现了Comparable接口(这个要求较高),要么就传入一个自定义的Comparator(这个更灵活)。

2.2 本题代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) {return null;}ListNode dummy = new ListNode(), p = dummy;Queue<ListNode> queue = new PriorityQueue<>((node1, node2) -> node1.val - node2.val);for (int i = 0; i < lists.length; i++) {if (lists[i] != null) {ListNode tmp = lists[i];while (tmp != null) {queue.add(tmp);tmp = tmp.next;}}}while (!queue.isEmpty()) {ListNode node = queue.poll();p.next = node;p = p.next;}p.next = null; // 合并升序链表问题,别忘了处理尾节点,否则链表可能成环。return dummy.next;}
}
2.2.1 进一步优化

没必要一次性将所有node都加入优先队列。

class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) {return null;}ListNode dummy = new ListNode(), p = dummy;Queue<ListNode> queue = new PriorityQueue<>(lists.length, (node1, node2) -> node1.val - node2.val);for (ListNode head : lists) {if (head != null) {queue.offer(head);}}while (!queue.isEmpty()) {ListNode node = queue.poll();p.next = node;p = p.next;if (node.next != null) {queue.offer(node.next);}}p.next = null;return dummy.next;}
}

2.3 分析这种解法的时空复杂度

2.3.1 时间复杂度
  • 一个k个链表,总共有n个节点。
  • 每个节点都会offer和poll优先队列各一次。
  • 每次的时间复杂度为O(logk):队列中最多k个元素,组成的树高为logk。

我们这里用到的优先队列,本质是小根堆,即一种特殊的完全二叉树。一棵由k个元素组成的完全二叉树,其树高为logk。

  • 因此,时间复杂度为O(nlogk)
2.3.2 空间复杂度
  • 队列中最多k个元素,因此空间复杂度为O(k)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/356021.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ASP.NET Core 6.0 启动方式

启动方式 Visualstudio 2022启动 IIS Express IIS Express 是一个专为开发人员优化的轻型独立版本的 IIS。 借助 IIS Express,可以轻松地使用最新版本的 IIS 开发和测试网站。 控制台版面 直接在浏览器输入监听的地址,监听的是 http://localhost:5137 脚本启动 dotnet run…

Dockerfile 自定义镜像

大家好 , 今天我要和大家分享一个现代软件开发中不可或缺的工具 - Docker . 在这个快速发展的技术时代 , 我们经常面临着应用部署的复杂性、环境差异以及不同操作系统之间的兼容性问题 . 这些问题不仅消耗大量时间 , 还可能导致项目延期和成本增加 . Docker 的出现解决了我们在…

成都晨持绪:现在的抖音网店怎么做更快起店

在当今社交媒体的浪潮中&#xff0c;抖音已经成为一个不可忽视的电商平台。对于想要快速起步的抖音网店来说&#xff0c;掌握一些关键策略至关重要。 首要的是定位清晰。你的网店需要有一个鲜明的主题&#xff0c;这可以是某一特定领域的产品&#xff0c;如美妆、服饰或是手工艺…

银河麒麟V10安装docker和docker-compose

1. 说明 系统镜像使用的是Kylin-Server-V10-SP3-2403-Release-20240426-x86_64.iso如果是在VMware中安装这个系统&#xff0c;需选择Ubuntu&#xff0c;如果选Centos会有问题。 尝试使用在线方式安装docker&#xff0c;报了很多错误&#xff0c;比较麻烦&#xff0c;建议使用离…

分享由AI制定一个商城网站的开发计划及推荐的开发语言

商城网站开发计划 一、项目概述 本商城网站开发计划旨在创建一个功能齐全、用户友好的在线购物平台&#xff0c;为顾客提供商品浏览、搜索、购物车管理、订单跟踪、在线支付等服务。商城将支持多种商品分类&#xff0c;包括但不限于电子产品、家居用品、服饰鞋帽等。 二、开…

数据结构【二叉树】

前言 我们在前面学习了使用数组来实现二叉树&#xff0c;但是数组实现二叉树仅适用于完全二叉树&#xff08;非完全二叉树会有空间浪费&#xff09;&#xff0c;所以我们本章讲解的是链式二叉树&#xff0c;但由于学习二叉树的操作需要有一颗树&#xff0c;才能学习相关的基本…

【Web APIs】DOM 文档对象模型 ④ ( querySelector 函数 | querySelectorAll 函数 | NodeList 对象 )

文章目录 一、querySelector 函数1、querySelector 函数简介2、完整代码示例 二、querySelectorAll 函数1、querySelectorAll 函数简介2、完整代码示例 三、NodeList 对象1、NodeList 对象简介2、完整代码示例 本博客相关参考文档 : WebAPIs 参考文档 : https://developer.moz…

Java中将文件转换为Base64编码的字节码

在Java中&#xff0c;将文件转换为Base64编码的字节码通常涉及以下步骤&#xff1a; 读取文件内容到字节数组。使用java.util.Base64类对字节数组进行编码。 下面是一个简单的Java示例代码&#xff0c;演示如何实现这个过程&#xff1a; import java.io.File; import java.io…

【HarmonyOS NEXT】鸿蒙 如何在包含web组件的页面 让默认焦点有效

页面包含web组件Button组件等&#xff0c;把页面的默认焦点放到Button组件上&#xff0c;不起效果。 因为web组件默认会在组件加载完成后获取焦点&#xff1b; 可以在web的网页加载完成时onPageEnd回调中&#xff0c;将设置默认获焦的组件通过focusControl.requestFocus方法主…

gitlab升级16.11.3-ee

背景 这是事后一段时间补充记录的博客。 升级目的&#xff1a;修补漏洞CVE-2024-4835 未经认证的威胁攻击者能够利用该漏洞在跨站脚本 (XSS) 攻击中&#xff0c;轻松接管受害者账户。 gitlab版本为14.6.2-ee升级至16.11.3-ee 思路 翻阅文档找升级方法及升级版本路径。使用…

切割游戏介绍

简介 上大学时&#xff0c;在学校实验室里玩过一个貌似使用VC写的小游戏&#xff0c;一个小球在界面上四处游荡&#xff0c;玩家使用鼠标切割背景&#xff0c;将背景切割剩余到一定的百分比后&#xff0c;就胜利了&#xff0c;后边的背景图会全部展示出来。 使用qt的qml技术&a…

Linux_文件IO

目录 一、库函数进行文件操作 1、fopen/fclose 2、fwrite 3、追加方式-“a” 4、fread 5、三个默认文件流 二、系统函数进行文件操作 1、open/close 2、write 3、追加方式-“O_APPEND” 4、read 5、struct file结构体 6、文件描述符 6.1 struct file的引用…

Pyqt QCustomPlot 简介、安装与实用代码示例(一)

目录 简介安装实用代码示例带有填充的简单衰减正弦函数及其红色的指数包络线具有数据点的 sinc 函数、相应的误差条和 2--sigma 置信带几种散点样式的演示展示 QCustomPlot 在设计绘图方面的多功能性 结语 所有文章除特别声明外&#xff0c;均采用 CC BY-NC-SA 4.0 许可协议。转…

数学-奇异值

有点名词党 奇异值的计算通常涉及矩阵的奇异值分解Singular Value Decomposition, SVD。奇异值分解是将一个矩形矩阵 ( A ) 分解为三个矩阵的乘积&#xff1a; [ A U ΣVT] 其中&#xff1a; - ( U ) 是一个 ( m m ) 的正交矩阵&#xff0c;它的列向量是 ( A AT) 的特征向…

课程标准包括哪些内容?

老师们常常会思考&#xff1a;课程标准究竟包含哪些要素&#xff1f;课程标准不仅仅是一系列冷冰冰的条条框框&#xff0c;而是活生生的指导原则&#xff0c;引领教学实践&#xff0c;激发学生的潜能。 课程标准&#xff0c;简而言之&#xff0c;是对学习成果的期望和要求的明确…

Starlink全系卫星详细介绍,波段频谱、激光星间链路技术、数据传输速率等等

Starlink全系卫星详细介绍&#xff0c;波段频谱、激光星间链路技术、数据传输速率等等。 Starlink是SpaceX公司开发的一个低轨道&#xff08;LEO&#xff09;卫星网络系统&#xff0c;旨在为全球用户提供高速宽带互联网服务。截至2024年6月&#xff0c;Starlink已经发射并运行…

rknn转换后精度差异很大,失真算子自纠

下面是添加了详细注释的优化代码&#xff1a; import cv2 import numpy as np import onnx import onnxruntime as rt from onnx import helper, shape_inferencedef get_all_node_names(model):"""获取模型中所有节点的名称。参数:model (onnx.ModelProto): O…

wordpress站群搭建3api代码生成和swagger使用

海鸥技术下午茶-wordpress站群搭建3api代码生成和swagger使用 目标:实现api编写和swagger使用 0.本次需要使用到的脚手架命令 生成 http server 代码 goctl api go -api all.api -dir ..生成swagger文档 goctl api plugin -plugin goctl-swagger"swagger -filename st…

【Kafka】Kafka Broker工作流程、节点服役与退役、副本、文件存储、高效读写数据-08

【Kafka】Kafka Broker工作流程、节点服役与退役、副本、文件存储、高效读写数据 1. Kafka Broker 工作流程1.1 Zookeeper 存储的 Kafka 信息1.2 Kafka Broker总体工作流程1.2.1 Controller介绍 1.3 Broker 重要参数 2. 节点服役与退役3. Kafka副本 1. Kafka Broker 工作流程 …

Python 数据可视化 散点图

Python 数据可视化 散点图 import matplotlib.pyplot as plt import numpy as npdef plot_scatter(ref_info_dict, test_info_dict):# 绘制散点图&#xff0c;ref横&#xff0c;test纵plt.figure(figsize(80, 48))n 0# scatter_header_list [peak_insert_size, median_insert…