概率论与数理统计期末复习

概率论常考知识点汇总

请添加图片描述
请添加图片描述

请添加图片描述请添加图片描述请添加图片描述
请添加图片描述请添加图片描述

总括

1. 基础概率论

  • 概率定义:理解概率是事件发生的可能性度量,范围从0(不可能)到1(必然发生)。
  • 概率公理:掌握概率的三大公理,即非负性、规范性和可加性。
  • 条件概率:P(A|B)表示在事件B已发生的条件下,事件A发生的概率。
  • 贝叶斯定理:用于计算在已知某些证据或数据的条件下,某个假设为真的概率。
  • 独立事件与相关事件:理解独立事件的概率乘法规则及相关事件的处理方法。

2. 随机变量及其分布

  • 离散随机变量:了解伯努利分布、二项分布、泊松分布等,以及它们的应用场景。
  • 连续随机变量:熟悉均匀分布、正态分布(高斯分布)、指数分布等,掌握其概率密度函数(PDF)和累积分布函数(CDF)。
  • 联合分布与边缘分布:理解多维随机变量的联合分布,及其边缘分布的计算方法。
  • 条件分布与协方差:学习如何基于给定条件下一个随机变量的分布,以及随机变量间的相互依赖关系。

3. 数理统计基础

  • 点估计:了解均值、中位数、众数作为参数的估计方法,以及最大似然估计和最小二乘法。
  • 区间估计:掌握置信区间的概念,理解如何构建参数的置信区间,特别是正态分布情况下的Z检验和t检验。
  • 假设检验:熟悉原假设与备择假设,掌握单样本和双样本检验,包括显著性水平、p值的理解与应用。
  • 方差分析(ANOVA):理解方差分析的基本原理,用于比较两个以上样本均值是否存在显著差异。

4. 高级主题(根据兴趣选择)

  • 贝叶斯统计:深入理解贝叶斯分析,包括先验概率、后验概率和贝叶斯推断。
  • 大数定律与中心极限定理:掌握这两个定理对于统计推断的重要意义。
  • 非参数统计:了解当数据不符合正态分布或其他特定分布时,使用如卡方检验、秩和检验等非参数方法。
  • 时间序列分析:研究随时间变化的数据序列,涉及自回归模型(AR)、移动平均模型(MA)及它们的组合ARIMA等。

基本概率公式

在概率论中,事件之间的关系及其运算主要涉及交集、并集、补事件以及条件概率,这些是理解和计算复合事件概率的基础。下面详细解释这些概念:

1. 交集 (Intersection)

  • 定义:如果A和B是两个事件,那么A∩B表示事件A和事件B同时发生的事件。即A和B的交集包含了所有既属于A又属于B的样本点。
  • 概率运算:事件A和B同时发生的概率,记作P(A∩B),等于各自发生的概率的乘积,仅当A和B是独立事件时,即P(A∩B) = P(A) * P(B)。若A和B不独立,则需要根据具体情况计算。

2. 并集 (Union)

  • 定义:事件A和B的并集,记作A∪B,包含所有至少属于A或B(或两者都属于)的样本点。

  • 概率运算

    :事件A或B至少有一个发生的概率,记作P(A∪B),可以通过以下公式计算:

    𝑃(𝐴∪𝐵)=𝑃(𝐴)+𝑃(𝐵)−𝑃(𝐴∩𝐵)P(A∪B)=P(A)+P(B)−P(A∩B)

    这里减去P(A∩B)是为了避免A和B共同部分被重复计算。

3. 补事件 (Complement)

  • 定义:对于任意事件A,它的补事件记作A’或𝐴ˉAˉ,表示A不发生的事件。
  • 概率运算:一个事件与其补事件的概率之和等于1,即P(A’) = 1 - P(A)。补事件的概念简化了某些问题的处理,特别是在计算“至少”或“至多”这类问题时。

4. 条件概率 (Conditional Probability)

  • 定义:在事件B已经发生的条件下,事件A发生的概率,记作P(A|B)。

  • 计算公式

    𝑃(𝐴∣𝐵)=𝑃(𝐴∩𝐵)𝑃(𝐵)P(A∣B)=P(B)P(A∩B)

    只有当P(B) > 0时,上述公式才有意义。

5. 乘法法则 (Multiplication Rule)

  • 用于计算两个事件同时发生的概率,特别地,它也关联条件概率和无条件概率的关系:

    𝑃(𝐴∩𝐵)=𝑃(𝐴)⋅𝑃(𝐵∣𝐴)=𝑃(𝐵)⋅𝑃(𝐴∣𝐵)P(A∩B)=P(A)⋅P(B∣A)=P(B)⋅P(A∣B)

    这表明可以从不同的角度理解两个事件同时发生的概率

随机变量

随机变量

定义:随机变量是将随机试验的结果与实数建立对应关系的函数。它可以分为两种类型:

  • 离散随机变量:取值为有限个或可数无限个确定值的随机变量,如抛掷一枚骰子得到的点数。
  • 连续随机变量:取值可以在某个区间内取任何值(理论上无限多)的随机变量,如测量一个人的身高。

分布函数

定义:随机变量 𝑋X 的分布函数(Cumulative Distribution Function, CDF),记作 𝐹(𝑥)F(x),定义为随机变量 𝑋X 取值小于或等于 𝑥x 的概率。形式上,对于任意实数 𝑥x,有:

𝐹(𝑥)=𝑃(𝑋≤𝑥)F(x)=P(X≤x)

性质

  1. 单调性:分布函数 𝐹(𝑥)F(x) 是单调不减的,即如果 𝑥1<𝑥2x1<x2,则 𝐹(𝑥1)≤𝐹(𝑥2)F(x1)≤F(x2)。
  2. 右连续性:𝐹(𝑥)F(x) 在每一个点 𝑥x 处都是右连续的,意味着 𝐹(𝑥)F(x) 在 𝑥x 的右侧极限存在,并等于 𝐹(𝑥)F(x) 在 𝑥x 处的值。
  3. 边界条件:分布函数在 −∞−∞ 处为 0,在 +∞+∞ 处为 1,即 𝐹(−∞)=0F(−∞)=0,𝐹(+∞)=1F(+∞)=1。
  4. 概率计算:对于任意两个实数 𝑎a 和 𝑏b,若 𝑎<𝑏a<b,则随机变量 𝑋X 落在区间 (𝑎,𝑏](a,b] 内的概率为 𝑃(𝑎<𝑋≤𝑏)=𝐹(𝑏)−𝐹(𝑎)P(a<X≤b)=F(b)−F(a)。

分布函数的分类

  • 离散随机变量的分布函数:通常是阶梯函数,每一步的跳跃高度代表相应值的概率质量。
  • 连续随机变量的分布函数:对于连续型随机变量,分布函数是连续的,而概率密度函数 𝑓(𝑥)f(x) 与分布函数的关系为 𝐹′(𝑥)=𝑓(𝑥)F′(x)=f(x) 在 𝑓(𝑥)f(x) 连续的地方成立,即分布函数的导数(在定义的地方)给出了概率密度。

离散型概率以及分布

离散型概率分布描述的是离散随机变量取不同值的概率。离散随机变量只能取有限个或可数无限个值,每个值都有一个明确的概率与之对应。下面是几个典型的离散型概率分布及其特征:

1. 伯努利分布 (Bernoulli Distribution)

  • 定义:伯努利试验是指只有两种可能结果的试验,通常称为“成功”和“失败”,且每次试验这两种结果的概率保持不变。设成功的概率为 𝑝p,失败的概率为 1−𝑝1−p,则一个伯努利随机变量 𝑋X 取值为1(成功)的概率为 𝑝p,取值为0(失败)的概率为 1−𝑝1−p。
  • 概率质量函数 (PMF):𝑃(𝑋=𝑘)=𝑝𝑘(1−𝑝)1−𝑘P(X=k)=pk(1−p)1−k,其中 𝑘=0,1k=0,1。

2. 二项分布 (Binomial Distribution)

  • 定义:在一系列独立的伯努利试验中,成功次数的分布称为二项分布。如果进行了 𝑛n 次独立的伯努利试验,每次试验成功的概率为 𝑝p,则在这些试验中恰好成功 𝑘k 次的概率服从二项分布。
  • PMF:𝑃(𝑋=𝑘)=(𝑛𝑘)𝑝𝑘(1−𝑝)𝑛−𝑘P(X=k)=(kn)pk(1−p)n−k,其中 (𝑛𝑘)(kn) 是组合数,表示从 𝑛n 个不同元素中取出 𝑘k 个元素的组合方式数量。

3. 泊松分布 (Poisson Distribution)

  • 定义:泊松分布常用来描述在一定时间或空间区域内,稀有事件发生次数的概率分布。如果平均每单位时间(或空间)内事件发生的次数为 𝜆λ,则在任意时间(或空间)区间内事件发生 𝑘k 次的概率遵循泊松分布。
  • PMF:𝑃(𝑋=𝑘)=𝜆𝑘𝑒−𝜆𝑘!P(X=k)=k!λke−λ,其中 𝜆λ 是平均事件数,𝑒e 是自然对数的底。

4. 几何分布 (Geometric Distribution)

  • 定义:几何分布描述的是首次成功前进行试验的次数。在一个伯努利试验序列中,直到首次成功所需试验的次数 𝑋X 服从几何分布,每次试验成功的概率为 𝑝p。
  • PMF:𝑃(𝑋=𝑘)=(1−𝑝)𝑘−1𝑝P(X=k)=(1−p)k−1p,𝑘=1,2,3,…k=1,2,3,…。

5. 负二项分布 (Negative Binomial Distribution)

  • 定义:负二项分布描述的是在第 𝑟r 次成功之前已经发生了 𝑘k 次失败的概率分布。它扩展了几何分布,考虑了达到固定成功次数前的失败次数。
  • PMF:𝑃(𝑋=𝑘)=(𝑘+𝑟−1𝑘)𝑝𝑟(1−𝑝)𝑘P(X=k)=(kk+r−1)pr(1−p)k,其中 𝑟r 是预先设定的成功次数。

组合公式

组合公式是用来计算从n个不同元素中不重复地选择r个元素的方法数,记作 𝐶(𝑛,𝑟)C(n,r) 或者 “𝑛n 选 𝑟r”,也称为二项式系数。公式如下:

𝐶(𝑛,𝑟)=𝑛!𝑟!(𝑛−𝑟)!C(n,r)=r!(n−r)!n!

其中,

  • 𝑛!n! 表示n的阶乘,即 𝑛×(𝑛−1)×(𝑛−2)×⋯×1n×(n−1)×(n−2)×⋯×1,
  • 𝑟!r! 是r的阶乘,
  • 𝑛−𝑟n−r 代表剩余未被选择的元素数量,
  • "!"符号表示阶乘运算。

当 𝑛<𝑟n<r 时,𝐶(𝑛,𝑟)C(n,r) 定义为0,因为无法从较少的元素中选择更多的元素。

这个公式在概率论、统计学、组合数学以及日常生活中解决排列组合问题时非常有用。

连续型随机变量

连续性随机变量是概率论中的一种重要概念,它用来描述那些可能取值无法逐一列举,而是在某个区间内可以取任意实数值的随机变量。与离散型随机变量不同,连续型随机变量在数轴上的取值是连续的,其概率分布需要用概率密度函数(probability density function, PDF)来描述,而不是概率质量函数。以下是连续性随机变量的详细解析:

请添加图片描述请添加图片描述

常见的连续型随机变量的及其分布

请添加图片描述

离散型随机变量函数的分布

离散型随机变量函数的分布是指如果有一个离散型随机变量 𝑋X,其概率质量函数(probability mass function, PMF)为 𝑃(𝑋=𝑥𝑖)=𝑝𝑖P(X=xi)=pi,对于 𝑋X 的某个函数 𝑌=𝑔(𝑋)Y=g(X),我们想要找到 𝑌Y 的分布,即求解 𝑌Y 的概率质量函数 𝑃(𝑌=𝑦𝑗)P(Y=yj)。

处理离散型随机变量函数分布的一般步骤如下:

  1. 确定 𝑌Y 的可能值:首先需要明确通过函数 𝑔g 转换后,𝑌Y 可能取到的所有值。这通常需要考虑 𝑋X 的所有可能取值,并应用 𝑔g 函数。
  2. 计算每个 𝑦𝑗yj 的概率:对于 𝑌Y 的每一个可能值 𝑦𝑗yj,需要找出所有能使 𝑔(𝑋)=𝑦𝑗g(X)=yj 的 𝑋X 的值集合 𝑆𝑗Sj,然后将这些 𝑋X 值对应的概率相加来得到 𝑃(𝑌=𝑦𝑗)P(Y=yj)。

𝑃(𝑌=𝑦𝑗)=∑𝑥𝑖∈𝑆𝑗𝑃(𝑋=𝑥𝑖)P(Y=yj)=∑xi∈SjP(X=xi)

这里,𝑆𝑗Sj 是使得 𝑔(𝑥𝑖)=𝑦𝑗g(xi)=yj 成立的所有 𝑥𝑖xi 的集合。

  1. 特殊情况处理:如果函数 𝑔g 导致某些 𝑌Y 的值没有对应的 𝑋X 值(即 𝑔g 不是满射),则那些 𝑌Y 的值的概率为0。反之,如果 𝑔g 将多个 𝑋X 映射到同一个 𝑌Y 值,则需要累加这些 𝑋X 值的概率。

举例说明:

假设 𝑋X 是一个离散型随机变量,取值为 {1, 2, 3},相应的概率分别为 1331。考虑函数 𝑌=𝑔(𝑋)=𝑋2Y=g(X)=X2。

  • 确定 𝑌Y 的可能值:应用 𝑔g 后,𝑌Y 的可能值为 {1, 4, 9}。
  • 计算每个 𝑦𝑗yj 的概率
    • 对于 𝑌=1Y=1,只有当 𝑋=1X=1 时成立,因此 𝑃(𝑌=1)=𝑃(𝑋=1)=13P(Y=1)=P(X=1)=31。
    • 对于 𝑌=4Y=4,只有当 𝑋=2X=2 时成立,所以 𝑃(𝑌=4)=𝑃(𝑋=2)=13P(Y=4)=P(X=2)=31。
    • 对于 𝑌=9Y=9,只有当 𝑋=3X=3 时成立,故 𝑃(𝑌=9)=𝑃(𝑋=3)=13P(Y=9)=P(X=3)=31。

最终,我们得到了 𝑌Y 的概率质量函数 𝑃(𝑌=1)=13P(Y=1)=31, 𝑃(𝑌=4)=13P(Y=4)=31, 𝑃(𝑌=9)=13P(Y=9)=31,这表明 𝑌Y 也是一个均匀分布的离散型随机变量。

二维连续型随机变量及其分布

二维连续性随机变量指的是由两个连续随机变量构成的随机向量,它们可以同时描述两个相互关联的连续随机现象。二维连续性随机变量的联合分布由联合概率密度函数(Joint Probability Density Function, JPDF)来描述,而边缘分布则描述了每个变量单独的分布情况。以下是二维连续性随机变量及其分布的详细说明:
请添加图片描述

请添加图片描述

协方差

请添加图片描述

计算协方差

计算协方差的具体步骤可以通过一个简单的例子来说明。假设我们有一组关于两个变量 𝑋X 和 𝑌Y 的数据对,分别是:

𝑋X𝑌Y
24
46
68
810

首先,我们计算每个变量的平均值(均值):

𝐸[𝑋]=2+4+6+84=204=5E[X]=42+4+6+8=420=5𝐸[𝑌]=4+6+8+104=284=7E[Y]=44+6+8+10=428=7

接下来,我们使用样本协方差的公式来计算协方差:

𝐶𝑜𝑣^(𝑋,𝑌)=1𝑛−1∑𝑖=1𝑛(𝑥𝑖−𝑥‾)(𝑦𝑖−𝑦‾)Cov(X,Y)=n−11∑i=1n(xi−x)(yi−y)

其中 𝑛=4n=4 是样本量,𝑥‾=5x=5 是 𝑋X 的均值,𝑦‾=7y=7 是 𝑌Y 的均值。现在,我们计算每一项并求和:

  • 对于第一对数据(2, 4):(2−5)(4−7)=(−3)(−3)=9(2−5)(4−7)=(−3)(−3)=9
  • 对于第二对数据(4, 6):(4−5)(6−7)=(−1)(−1)=1(4−5)(6−7)=(−1)(−1)=1
  • 对于第三对数据(6, 8):(6−5)(8−7)=(1)(1)=1(6−5)(8−7)=(1)(1)=1
  • 对于第四对数据(8, 10):(8−5)(10−7)=(3)(3)=9(8−5)(10−7)=(3)(3)=9

现在,将这些乘积相加并应用公式:

𝐶𝑜𝑣^(𝑋,𝑌)=14−1×(9+1+1+9)=13×20=203Cov(X,Y)=4−11×(9+1+1+9)=31×20=320

因此,变量 𝑋X 和 𝑌Y 之间的样本协方差大约为 6.676.67。这个正值表明 𝑋X 和 𝑌Y 之间存在正相关关系,即随着 𝑋X 的增加,𝑌Y 也倾向于增加。
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/356122.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

五十四、openlayers官网示例LineString Arrows解析——在地图上绘制箭头

官网demo地址&#xff1a; LineString Arrows 这篇介绍了在地图上绘制箭头。 创建一个矢量数据源&#xff0c;将其绑定为draw的数据源并展示在矢量图层上。 const source new VectorSource();const vector new VectorLayer({source: source,style: styleFunction,});map.ad…

鸿蒙开发:【进程模型概述】

进程模型概述 系统的进程模型如下图所示&#xff1a; 应用中&#xff08;同一包名&#xff09;的所有PageAbility、ServiceAbility、DataAbility、FormAbility运行在同一个独立进程中&#xff0c;即图中绿色部分的“Main Process”。 WebView拥有独立的渲染进程&#xff0c;即…

容器之布局容器的演示

代码; #include <gtk-2.0/gtk/gtk.h> #include <glib-2.0/glib.h> #include <gtk-2.0/gdk/gdkkeysyms.h> #include <stdio.h>void change_image(GtkFileChooserButton *filebutton, // GdkEvent *event,GtkImage *image) {gtk_image_set_from_file(im…

vscode颜色没有显示出来颜色预览效果,安装插件解决

1、先上一张图&#xff0c;看看之前没有安装插件的Html颜色的色块 2、安装插件Color Highlight 这样颜色对应的效果就出来了。

python eval 函数和 json 对象的使用

注意&#xff1a; 1、python 不支持 switch 语句&#xff0c;所以多个条件判断分支的写法只能用 if 2、elif 对应 Java 中的 else if 3、python 编写的程序代码都是自上而下执行&#xff0c;除非代码控制&#xff0c;不然不会改变 4、需要注意代码层级&#xff0c;如果层级不对…

UE5近战对抗系统Tutorial

文章目录 BP_Character 组合攻击Notify State 检测攻击BP_Character 攻击反馈BP_Character 生命系统BP_Character 死亡效果BP_Character 武器系统BP_Enemy 初始化和行为树 BP_Character 组合攻击 首先我们获取攻击动画&#xff0c;在这里使用的是 Easy Combo Buffering 的攻击…

nvidia历史版本驱动

打开官网 https://www.nvidia.cn windows GTX-1060为例 标准

海量数据处理利器 Roaring BitMap 原理介绍

作者&#xff1a;来自 vivo 互联网服务器团队- Zheng Rui 本文结合个人理解梳理了BitMap及Roaring BitMap的原理及使用&#xff0c;分别主要介绍了Roaring BitMap的存储方式及三种container类型及Java中Roaring BitMap相关API使用。 一、引言 在进行大数据开发时&#xff0c;…

全网首测!文生软件平台码上飞CodeFlying,效果炸裂!

前言&#xff1a; 提到AIGC&#xff0c;在大家的印象中应该就是让AI自己生成文字&#xff0c;图片等内容吧。随着今年Sora&#xff0c;Suno的爆火&#xff0c;将AIGC的应用场景又拉到了一个新的高度&#xff0c;为人们带来了更多的遐想。在未来&#xff0c;或许可以用AI来生成…

【2024德国工作】外国人在德国找工作是什么体验?

挺难的&#xff0c;德语应该是所有中国人的难点。大部分中国人进德国公司要么是做中国业务相关&#xff0c;要么是做技术领域的工程师。先讲讲人在中国怎么找德国的工作&#xff0c;顺便延申下&#xff0c;德国工作的真实体验&#xff0c;最后聊聊在今年的德国工作签证申请条件…

视频监控平台功能介绍:内部设备管理(rtsp、sdk、onvif、ehome/ISUP、主动注册协议等)

一、功能概述 AS-V1000视频平台是一套集成了用户设备权限管理、视音频监控、大容量存储、电子地图的系统平台软件。它结合了现代视频技术、网络通讯技术、计算机控制技术、流媒体传输技术的综合解决方案&#xff0c;为用户提供了强大的、灵活的组网和应用能力。 AS-V1000管理端…

蓝牙资讯|苹果iOS 18增加对AirPods Pro 2自适应音频的更多控制

苹果 iOS 18 系统将为 AirPods Pro 2 用户带来一项实用功能 —— 更精细的“自适应音频”控制。AirPods Pro 2 的“自适应音频”功能包含自适应降噪、个性化音量和对话增强等特性&#xff0c;可以根据周围环境自动调节声音和降噪效果。 当更新至最新测试版固件的 AirPods Pro 2…

EtherCAT扫盲,都是知识点

1. 什么是EtherCAT EtherCAT&#xff0c;全称Ethernet for Control Automation Technology&#xff0c;字面意思就是用于控制自动化技术的以太网。它是一种基于以太网的实时工业通信协议&#xff0c;简单说&#xff0c;就是让机器们通过网线互相聊天的高级方式。 EtherCAT 是最…

nodejs 某音douyin网页端搜索接口及x_bogus、a_bogus(包含完整源码)(2024-06-13)

前言 x_bogus或a_bogus算法大概是对数据、ua、时间戳、浏览器的几个指纹进行计算&#xff0c;拿到一个110位大数组&#xff0c;然后转字符&#xff0c;在头部再添加十二位随机字符&#xff0c;再进行魔改的base64加密。 问&#xff1a;抖音的x_bogus、a_bogus值有什么用&#x…

【自动驾驶】ROS小车系统

文章目录 小车组成轮式运动底盘的组成轮式运动底盘的分类轮式机器人的控制方式感知传感器ROS决策主控ROS介绍ROS的坐标系ROS的单位机器人电气连接变压模块运动底盘的电气连接ROS主控与传感器的电气连接ROS主控和STM32控制器两种控制器的功能运动底盘基本组成电池电机控制器与驱…

ServBay 下一代Web开发环境

ServBay是一个集成式、图形化的本地化Web开发环境。开发者通过ServBay几分钟就能部署一个本地化的开发环境。解决了Web开发者&#xff08;比如PHP、Nodejs&#xff09;、测试工程师、小型团队安装和维护开发测试环境的问题&#xff0c;同时可以快速的进行环境的升级以及维护。S…

五十三、openlayers官网示例Layer Spy解析——跟随鼠标透视望远镜效果、图层剪裁

官网demo地址&#xff1a; Layer Spy 这篇实现了鼠标跟随望远镜效果&#xff0c;鼠标移动时绘制一个圆形的剪裁区剪裁上层图层。 container.addEventListener("mousemove", function (event) {mousePosition map.getEventPixel(event);map.render();});container.a…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 任务安排问题(200分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📎在线评测链接 https://app5938.acapp.acwing.com.cn/contest/2/problem/OD…

力扣1793.好子数组的最大分数

力扣1793.好子数组的最大分数 对于每个数 求其左右两侧小于它高度的元素下标(单调栈) class Solution {public:int maximumScore(vector<int>& nums, int k) {int n nums.size();vector<int> left(n,-1);stack<int> st;for(int i0;i<n;i){while(!…

Qt做群控系统

群控系统顾名思义&#xff0c;一台设备控制多台机器。首先我们来创造下界面。我们通过QT UI设计界面。设计界面如下&#xff1a; 登录界面&#xff1a; 登录界面分为两种角色&#xff0c;一种是管理员&#xff0c;另一种是超级管理员。两种用户的主界面是不同的。通过选中记住…