U-Net for Image Segmentation

1.Unet for Image Segmentation

笔记来源:使用Pytorch搭建U-Net网络并基于DRIVE数据集训练(语义分割)

1.1 DoubleConv (Conv2d+BatchNorm2d+ReLU)

import torch
import torch.nn as nn
import torch.nn.functional as F# nn.Sequential 按照类定义的顺序去执行模型,并且不需要写forward函数
class DoubleConv(nn.Sequential): # class 子类(父类)
# __init__() 是一个类的构造函数,用于初始化对象的属性。它会在创建对象时自动调用,而且通常在这里完成对象所需的所有初始化操作
# forward方法是实现模型的功能,实现各个层之间的连接关系的核心# def __init__(self) 只有一个self,指的是实例的本身。它允许定义一个空的类对象,需要实例化之后,再进行赋值# def __init__(self,args) 属性值不允许为空,实例化时,直接传入参数def __init__(self,in_channels,out_channels,mid_channels=None) # DoubleConv输入的通道数,输出的通道数,DoubleConv中第一次conv后输出的通道数if mid_channels is None: # mid_channels为none时执行语句mid_channels = out_channelssuper(DoubleConv,self).__init__(  #继承父类并且调用父类的初始化方法nn.Conv2d(in_channels,mid_channels,kernel_size=3,padding=1,bias=False),nn.BatchNorm2d(mid_channels), # 进行数据的归一化处理,这使得数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定nn.ReLU(inplace=True), # 指原地进行操作,操作完成后覆盖原来的变量nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1,bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))

1.1.1 Conv2d

直观了解kernel size、stride、padding、bias
原始图像通过与卷积核的数学运算,可以提取出图像的某些指定特征,卷积核相当于“滤镜”可以着重提取它感兴趣的特征

下图来自:Expression recognition based on residual rectification convolution neural network

1.1.2 BatchNorm2d

To understand what happens without normalization, let’s look at an example with just two features that are on drastically different scales. Since the network output is a linear combination of each feature vector, this means that the network learns weights for each feature that are also on different scales. Otherwise, the large feature will simply drown out the small feature.
Then during gradient descent, in order to “move the needle” for the Loss, the network would have to make a large update to one weight compared to the other weight. This can cause the gradient descent trajectory to oscillate back and forth along one dimension, thus taking more steps to reach the minimum.—Batch Norm Explained Visually — How it works, and why neural networks need it

if the features are on the same scale, the loss landscape is more uniform like a bowl. Gradient descent can then proceed smoothly down to the minimum. —Batch Norm Explained Visually — How it works, and why neural networks need it

Batch Norm is just another network layer that gets inserted between a hidden layer and the next hidden layer. Its job is to take the outputs from the first hidden layer and normalize them before passing them on as the input of the next hidden layer.

without batch norm
include batch norm




下图来自:BatchNorm2d原理、作用及其pytorch中BatchNorm2d函数的参数讲解

1.1.3 ReLU

How an Activation function works?

We know, the neural network has neurons that work in correspondence with weight, bias, and their respective activation function. In a neural network, we would update the weights and biases of the neurons on the basis of the error at the output. This process is known as Back-propagation. Activation functions make the back-propagation possible since the gradients are supplied along with the error to update the weights and biases. —Role of Activation functions in Neural Networks

Why do we need Non-linear Activation function?

Activation functions introduce non-linearity into the model, allowing it to learn and perform complex tasks. Without them, no matter how many layers we stack in the network, it would still behave as a single-layer perceptron because the composition of linear functions is a linear function. —Convolutional Neural Network — Lesson 9: Activation Functions in CNNs

Doesn’t matter how many hidden layers we attach in neural net, all layers will behave same way because the composition of two linear function is a linear function itself. Neuron cannot learn with just a linear function attached to it. A non-linear activation function will let it learn as per the difference w.r.t error. Hence, we need an activation function.—Role of Activation functions in Neural Networks

下图来自:Activation Functions 101: Sigmoid, Tanh, ReLU, Softmax and more

1.2 Down (MaxPool+DoubleConv)

class Down(nn.Sequential):def __init__(self,in_channels,out_channels):super(Down,self).__init__(nn.MaxPool2d(2,stride=2), # kernel_size核大小,stride核的移动步长DoubleConv(in_channels,out_channels))

1.2.1 MaxPool

Two reasons for applying Max Pooling :

  1. Downscaling Image by extracting most important feature
  2. Removing Invariances like shift, rotational and scale

下图来自:Max Pooling, Why use it and its advantages.

Max Pooling is advantageous because it adds translation invariance. There are following types of it

  1. Shift Invariance(Invariance in Position)
  2. Rotational Invariance(Invariance in Rotation)
  3. Scale Invariance(Invariance in Scale(small or big))

1.3 Up (Upsample/ConvTranspose+DoubleConv)

双线性插值进行上采样

转置卷积进行上采样

class Up(nn.Module):
# __init__() 是一个类的构造函数,用于初始化对象的属性。它会在创建对象时自动调用,而且通常在这里完成对象所需的所有初始化操作def __init__(self,in_channels,out_channels,bilinear=True): #默认通过双线性插值进行上采样super(Up,self).__init__()if bilinear: #通过双线性插值进行上采样self.up = nn.Upsample(scale_factor=2,mode='bilinear',align_corners=True) #输出为输入的多少倍数、上采样算法、输入的角像素将与输出张量对齐self.conv = DoubleConv(in_channels,out_channels,in_channels//2)else #通过转置卷积进行上采样self.up = nn.ConvTranspose2d(in_channels,in_channels//2,kernel_size=2,stride=2)self.conv = DoubleConv(in_channels,out_channels) # mid_channels = none时 mid_channels = mid_channels
# forward方法是实现模型的功能,实现各个层之间的连接关系的核心def forward(self,x1,x2) # 对x1进行上采样,将上采样后的x1与x2进行cat# 对x1进行上采样x1 = self.up(x1)# 对上采样后的x1进行padding,使得上采样后的x1与x2的高宽一致# [N,C,H,W] Number of data samples、Image channels、Image height、Image widthdiff_y = x2.size()[2] - x1.size()[2] # x2的高度与上采样后的x1的高度之差diff_x = x2.size()[3] - x2.size()[3] # x2的宽度与上采样后的x1的宽度之差# padding_left、padding_right、padding_top、padding_bottomx1 = F.pad(x1,[diff_x//2, diff_x-diff_x//2, diff_y//2, diff_y-diff_y//2])# 上采样后的x1与x2进行catx = torch.cat([x2,x1],dim=1)# x1和x2进行cat之后进行doubleconvx = self.conv(x)return x

1.3.1 Upsample

上采样率scale_factor

双线性插值bilinear


角像素对齐align_corners
下图来自:[PyTorch]Upsample

1.4 OutConv

class OutConv(nn.Sequential):def __init__(self, in_channels, num_classes):super(OutConv,self).__init__(nn.Conv2d(in_channels,num_classes,kernel_size=1) #输出分类类别的数量num_classes)

1.5 Unet

class UNet(nn.Module):def __init__(self,in_channels: int = 1, # 网络输入图片的通道数num_classes: int = 2, # 网络输出分类类别数bilinear: bool = True, # 上采样时使用双线性插值base_c: int = 64): # 基础通道数,网络中其他层的通道数均为该基础通道数的倍数super(UNet,self).__init__()self.in_channels = in_channelsself.num_classes = num_classesself.bilinear = bilinearself.in_conv = DoubleConv(in_channels,base_c) # in_channels、out_channels、mid_channels=noneself.down1 = Down(base_c,base_c*2) # in_channels、out_channels self.down2 = Down(base_c*2,base_c*4)self.down3 = Down(base_c*4,base_c*8)factor = 2 if bilinear else 1 #如果上采样使用双线性插值则factor=2,若使用转置卷积则factor=1self.down4 = Down(base_c*8,base_c*16//factor)self.up1 = Up(base_c*16, base_c*8//factor, bilinear) # in_channels、out_channels、bilinear=Trueself.up2 = Up(base_c*8, base_c*4//factor, bilinear)self.up3 = Up(base_c*4, base_c*2//factor, bilinear)self.up4 = Up(base_c*2, base_c, bilinear)self.out_conv = OutConv(base_c, num_classes) # in_channels, num_classesdef forward(self,x):x1 = self.in_conv(x)x2 = self.down1(x1)x3 = self.down2(x2)x4 = self.down3(x3)x5 = self.down4(x4)x = self.up1(x5,x4) # 对x5进行上采样,将上采样后的x5与x4进行catx = self.up2(x,x3)x = self.up3(x,x2)x = self.up4(x,x1)logits = self.out_conv(x)return {"out": logits} # 以字典形式返回

为何没有调用forward方法却能直接使用?
nn.Module类是所有神经网络模块的基类,需要重载__init__和forward函数

self.up1 = Up(base_c*16, base_c*8//factor, bilinear) //实例化Up
....
x = self.up1(x5,x4) //调用 Up() 中的 forward(self,x1,x2) 函数

up1调用父类nn.Module中的__call__方法,__call__方法又调用UP()中的forward方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/356893.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

echarts Y轴展示时间片段,series data数据 也是时间片段,鼠标放上去 提示框显示对应的时间片段

功能要求 1、折线图,展示每天对应的一个时间片段 2、echarts Y轴展示时间片段,如:[00:00,03:00,05:15] 3、X轴展示日期,如:[xx年xx月xx日] 后端返回的数据结构,如 [{xAdate:"2024-06-15",data:…

【Spine学习14】之 裁剪

1、新建裁剪 2、在页面中随便点几下 圈出对应位置 3、点编辑裁剪 或者按空格键 退出编辑模式, 页面就只剩下对应区域,这个区域可以任意拖动 放大缩小显示。 tips: 如果手动选择区域描绘不准确,可以启用对应图片的网格 然后复制…

高性能并行计算华为云实验一:MPI矩阵运算

目录 一、实验目的 二、实验说明 三、实验过程 3.1 创建矩阵乘法源码 3.1.1 实验说明 3.1.2 实验步骤 3.2 创建卷积和池化操作源码 3.2.1 实验说明 3.2.2 实验步骤 3.3 创建Makefile文件并完成编译 3.4 建立主机配置文件与运行监测 四、实验结果与分析 4.1 矩阵乘法…

C++Muduo网络库初探

Muduo初探 Muduo网络库简介 Muduo是由【陈硕】大佬个人开发的TCP网络编程库,基于Reactor模式,提供了高效的事件驱动网络编程框架,有助于快速搭建高性能的网络服务端。 什么是Reactor模式? I/O多路复用 在网络I/O中&#xff0…

Word页码设置,封面无页码,目录摘要阿拉伯数字I,II,III页码,正文开始123为页码

一、背景 使用Word写项目书或论文时,需要正确插入页码,比如封面无页码,目录摘要阿拉伯数字I,II,III为页码,正文开始以123为页码,下面介绍具体实施方法。 所用Word版本:2021 二、W…

jrt从量变到质变

又是一个加班的周末,上周把台式机代码和数据库环境弄好了,这周进行大数据测试,直接把标本、标本医嘱、报告、报告结果、药敏结果等数据插入到1亿的规模,跑了一天一夜插入了5000多万个标本,后面接着补剩下的到一亿。 演…

编程书籍的枯燥真相:你也有同样的感受吗?

讲动人的故事,写懂人的代码 我得实话实说,你可能已经发现市面上的大部分编程入门书籍有些枯燥。这个问题的根源在于许多作者把本应该充满乐趣和吸引力的入门指南,写得就像一本沉闷的参考手册。这就好比把一本充满冒险和乐趣的旅行日记,写成了一本单调乏味的字典。 我完全理…

数据库精选题(三)(SQL语言精选题)(按语句类型分类)

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀数据库 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 前言 创建语句 创建表 创建视图 创建索引…

React+TS前台项目实战(十二)-- 全局常用组件Toast封装,以及rxjs和useReducer的使用

文章目录 前言Toast组件1. 功能分析2. 代码详细注释(1)建立一个reducer.ts文件,用于管理状态数据(2)自定义一个清除定时器的hook(3)使用rxjs封装全局变量管理hook(4)在to…

GPT-4o一夜被赶超,Claude 3.5一夜封王|快手可灵大模型推出图生视频功能|“纯血”鸿蒙大战苹果AI|智谱AI“钱途”黯淡|月之暗面被曝进军美国

快手可灵大模型推出图生视频功能“纯血”鸿蒙大战苹果AI,华为成败在此一举大模型低价火拼间,智谱AI“钱途”黯淡手握新“王者”,腾讯又跟渠道干上了“美食荒漠”杭州,走出一个餐饮IPOGPT-4o一夜被赶超,Anthropic推出Cl…

和琪宝的厦门之旅~

本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。 本作品 (李兆龙 博文, 由 李兆龙 创作),由 李兆龙 确认,转载请注明版权。 引言 承接去年国庆的遗憾,我们将这次的旅行城市定为厦门。 琪宝是下午四点左右到…

jupyter notebook中使用不同的anaconda环境及常用conda命令

conda命令 在jupyter notebook中使用不同的anaconda环境配置 Jupyter notebook创建conda环境并配置内核 其他常用conda命令 在jupyter notebook中使用不同的anaconda环境 配置 Jupyter notebook 先用管理员身份打开Anaconda,再依次执行下列命令 在base环境中安装…

临时关闭Windows安全中心

在使用WindowsOS是,微软安全中心是我们必不可少的安全防护,但有时我们也会产生想要将其关闭的需求,下面将要介绍如何临时关闭Windows的安全中心 一、打开安全中心、选择“病毒与威胁防护”,点击“管理设置” 之后将其实时保护关闭…

Github上传大于100M的文件(ubuntu教程)

安装Git-lfs Git Large File Storage (LFS) 使用 Git 内部的文本指针替换音频样本、视频、数据集和图形等大文件,同时将文件内容存储在 GitHub.com 或 GitHub Enterprise 等远程服务器上。官网下载:https://git-lfs.github.com/ ./install.sh上传 比如…

RabbitMQ实践——最大长度队列

大纲 抛弃消息创建最大长度队列绑定实验 转存死信创建死信队列创建可重写Routing key的最大长度队列创建绑定关系实验 在一些业务场景中,我们只需要保存最近的若干条消息,这个时候我们就可以使用“最大长度队列”来满足这个需求。该队列在收到消息后&…

解锁PDF处理新境界:轻松调整字体,让你的文档焕然一新!

数字化时代,PDF文件已经成为我们日常办公和学习中不可或缺的一部分。它们为我们提供了方便的阅读体验,同时也保证了文档内容的完整性和格式的统一性。然而,有时候我们可能会遇到一个问题:如何轻松调整PDF文件中的字体,…

RockChip Android12 System之MultipleUsers

一:概述 System中的MultipleUsers不同于其他Preference采用system_dashboard_fragment.xml文件进行加载,而是采用自身独立的xml文件user_settings.xml加载。 二:Multiple Users 1、Activity packages/apps/Settings/AndroidManifest.xml <activityandroid:name="S…

【免费】中国电子学会2024年03月份青少年软件编程Python等级考试试卷一级真题(含答案)

2024-03 Python一级真题 分数&#xff1a;100 题数&#xff1a;37 测试时长&#xff1a;60min 一、单选题(共25题&#xff0c;共50分) 1. 下列哪个命令&#xff0c;可以将2024转换成2024 呢&#xff1f;&#xff08; A&#xff09;(2分) A.str(2024) B.int(2024) C.fl…

51学习记录(一)——51介绍及震动感应灯

文章目录 前言一、STC89C522.内部结构及引脚 二、继电器原理及震动传感器原理三、项目搭建及实现 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、STC89C52 1.简介 所属系列&#xff1a;51单…

plt绘制网格图

代码 obj "accu" for (epoch,lr) in config:with open(data/epoch_{}_lr_{}_Adam.pkl.format(epoch,lr),rb) as f:data pickle.load(f) plt.plot(range(1,epoch1),data[obj],labelflr{lr})plt.title(obj"-epoch") plt.xlabel("epoch"…