目标检测算法——助力涨点 | YOLOv5改进结合Alpha-IoU

深度学习Tricks,第一时间送达

论文题目:《Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression》

论文地址:  https://arxiv.org/abs/2110.13675v2

1.论文简介:

文中,作者将现有的基于IoU Loss推广到一个新的Power IoU系列 Loss,该系列具有一个Power IoU项和一个附加的Power正则项,具有单个Power参数α。称这种新的损失系列为α-IoU Loss。在多目标检测基准和模型上的实验表明,α-IoU损失:

  • 可以显著地超过现有的基于IoU的损失;

  • 通过调节α,使检测器在实现不同水平的bbox回归精度方面具有更大的灵活性;

  • 对小数据集和噪声的鲁棒性更强。

实验结果表明,α(α>1)增加了high IoU目标的损失和梯度,进而提高了bbox回归精度。

power参数α可作为调节α-IoU损失的超参数以满足不同水平的bbox回归精度,其中α >1通过更多地关注High IoU目标来获得高的回归精度(即High IoU阈值)。

α对不同的模型或数据集并不过度敏感,在大多数情况下,α=3表现一贯良好。α-IoU损失家族可以很容易地用于改进检测器的效果,在干净或嘈杂的环境下,不会引入额外的参数,也不增加训练/推理时间。

2.相应代码:

def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, EIoU=False, alpha=3, eps=1e-9):# Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + eps# change iou into pow(iou+eps) 加入α次幂# alpha iouiou = torch.pow(inter / union + eps, alpha)beta = 2 * alphaif GIoU or DIoU or CIoU or EIoU:# 两个框的最小闭包区域的width和heightcw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightif CIoU or DIoU or EIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1# 最小外接矩形 对角线的长度平方c2 = cw ** beta + ch ** beta + eps  # convex diagonalrho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)# 两个框中心点之间距离的平方rho2 = (rho_x ** beta + rho_y ** beta) / (2 ** beta)  # center distanceif DIoU:return iou - rho2 / c2  # DIoUelif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)with torch.no_grad():alpha_ciou = v / ((1 + eps) - inter / union + v)# return iou - (rho2 / c2 + v * alpha_ciou)  # CIoUreturn iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU# EIoU 在CIoU的基础上# 将预测框宽高的纵横比损失项 拆分成预测框的宽高分别与最小外接框宽高的差值# 加速了收敛提高了回归精度elif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** betarho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** betacw2 = cw ** beta + epsch2 = ch ** beta + epsreturn iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)# GIoU https://arxiv.org/pdf/1902.09630.pdfc_area = torch.max(cw * ch + eps, union)  # convex areareturn iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoUelse:return iou  # torch.log(iou+eps) or iou

最后,将utils/loss.py文件中的iou=bbox_iou换iou=bbox_alpha_iou即可。


🚀🏆🍀【算法创新&算法训练&论文投稿】相关链接👇👇👇


【YOLO创新算法尝新系列】

🏂 美团出品 | YOLOv6 v3.0 is Coming(超越YOLOv7、v8)

🏂 官方正品 | Ultralytics YOLOv8算法来啦(尖端SOTA模型)

🏂 改进YOLOv5/YOLOv7——魔改YOLOv5/YOLOv7提升检测精度(涨点必备)

————————————🌴【重磅干货来袭】🎄————————————

🚀一、主干网络改进(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合ConvNeXt结构(纯卷积|超越Swin)

2.目标检测算法——YOLOv5/YOLOv7改进之结合MobileOne结构(高性能骨干|仅需1ms)

3.目标检测算法——YOLOv5/YOLOv7改进之结合Swin Transformer V2(涨点神器)

4.目标检测算法——YOLOv5/YOLOv7改进结合BotNet(Transformer)

5.目标检测算法——YOLOv5/YOLOv7改进之GSConv+Slim Neck(优化成本)

6.目标检测算法——YOLOv5/YOLOv7改进结合新神经网络算子Involution(CVPR 2021)

7.目标检测算法——YOLOv7改进|增加小目标检测层

8.目标检测算法——YOLOv5改进|增加小目标检测层

🌴 持续更新中……

🚀二、轻量化网络(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合​RepVGG(速度飙升)

2.目标检测算法——YOLOv5/YOLOv7改进之结合​PP-LCNet(轻量级CPU网络)

3.目标检测算法——YOLOv5/YOLOv7改进之结合轻量化网络MobileNetV3(降参提速)

4.目标检测算法——YOLOv5/YOLOv7改进|结合轻量型网络ShuffleNetV2

5.目标检测算法——YOLOv5/YOLOv7改进结合轻量型Ghost模块

🌴 持续更新中……

🚀三、注意力机制(持续更新中)🎄🎈

1.目标检测算法——YOLOv5改进之结合CBAM注意力机制

2.目标检测算法——YOLOv7改进之结合CBAM注意力机制

3.目标检测算法——YOLOv5/YOLOv7之结合CA注意力机制

4.目标检测算法——YOLOv5/YOLOv7改进之结合ECA注意力机制

5.目标检测算法——YOLOv5/YOLOv7改进之结合NAMAttention(提升涨点)

6.目标检测算法——YOLOv5/YOLOv7改进之结合GAMAttention

7.目标检测算法——YOLOv5/YOLOv7改进之结合无参注意力SimAM(涨点神器)

8.目标检测算法——YOLOv5/YOLOv7改进之结合Criss-Cross Attention

9.​目标检测算法——YOLOv5/YOLOv7改进之结合​SOCA(单幅图像超分辨率)

🌴 持续更新中……

🚀四、检测头部改进(持续更新中)🎄🎈

1.魔改YOLOv5/v7高阶版(魔法搭配+创新组合)——改进之结合解耦头Decoupled_Detect

2.目标检测算法——YOLOv5/YOLOv7改进结合涨点Trick之ASFF(自适应空间特征融合)

🌴 持续更新中……

🚀五、空间金字塔池化(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进之结合​ASPP(空洞空间卷积池化金字塔)

2.目标检测算法——YOLOv5/YOLOv7改进之结合特征提取网络RFBNet(涨点明显)

🌴 持续更新中……

🚀六、损失函数及NMS改进(持续更新中)🎄🎈

1.目标检测算法——YOLOv5/YOLOv7改进|将IOU Loss替换为EIOU Loss

2.目标检测算法——助力涨点 | YOLOv5改进结合Alpha-IoU

3.目标检测算法——YOLOv5/YOLOv7改进之结合SIoU

4.目标检测算法——YOLOv5将NMS替换为DIoU-NMS

🌴 持续更新中……

🚀七、其他创新改进项目(持续更新中)🎄🎈

1.手把手教你搭建属于自己的PyQt5-YOLOv5目标检测平台(保姆级教程)

2.YOLO算法改进之结合GradCAM可视化热力图(附详细教程)

3.目标检测算法——YOLOv5/YOLOv7改进之结合SPD-Conv(低分辨率图像和小目标涨点明显)

4.目标检测算法——YOLOv5/YOLOv7改进之更换FReLU激活函数

5.目标检测算法——YOLOv5/YOLOv7改进之结合BiFPN

🌴 持续更新中……

🚀八、算法训练相关项目(持续更新中)🎄🎈

1.目标检测算法——YOLOv7训练自己的数据集(保姆级教程)

2.人工智能前沿——玩转OpenAI语音机器人ChatGPT(中文版)

3.深度学习之语义分割算法(入门学习)

4.知识经验分享——YOLOv5-6.0训练出错及解决方法(RuntimeError)

5.目标检测算法——将xml格式转换为YOLOv5格式txt

6.目标检测算法——YOLOv5/YOLOv7如何改变bbox检测框的粗细大小

7.人工智能前沿——6款AI绘画生成工具

8.YOLOv5结合人体姿态估计

9.超越YOLOv5,0.7M超轻量,又好又快(PP-YOLOE&PP-PicoDet)

10.目标检测算法——收藏|小目标检测的定义(一)

11.目标检测算法——收藏|小目标检测难点分析(二)

12.目标检测算法——收藏|小目标检测解决方案(三)

🌴 持续更新中……

🚀九、数据资源相关项目(持续更新中)🎄🎈

1.目标检测算法——小目标检测相关数据集(附下载链接)

2.目标检测算法——3D公共数据集汇总(附下载链接)

3.目标检测算法——3D公共数据集汇总 2(附下载链接)

4.目标检测算法——行人检测&人群计数数据集汇总(附下载链接)

5.目标检测算法——遥感影像数据集资源汇总(附下载链接)

6.目标检测算法——自动驾驶开源数据集汇总(附下载链接)

7.目标检测算法——自动驾驶开源数据集汇总 2(附下载链接)

8.目标检测算法——图像分类开源数据集汇总(附下载链接)

9.目标检测算法——医学图像开源数据集汇总(附下载链接)

10.目标检测算法——工业缺陷数据集汇总1(附下载链接)

11.目标检测算法——工业缺陷数据集汇总2(附下载链接)

12.目标检测算法——垃圾分类数据集汇总(附下载链接)

13.目标检测算法——人脸识别数据集汇总(附下载链接)

14.目标检测算法——安全帽识别数据集(附下载链接)

15.目标检测算法——人体姿态估计数据集汇总(附下载链接)

16.目标检测算法——人体姿态估计数据集汇总 2(附下载链接)

17.目标检测算法——车辆牌照识别数据集汇总(附下载链接)

18.目标检测算法——车辆牌照识别数据集汇总 2(附下载链接)

19.收藏 | 机器学习公共数据集集锦(附下载链接)

20.目标检测算法——图像分割数据集汇总(附下载链接)

21.目标检测算法——图像分割数据集汇总 2(附下载链接)

22.收藏 | 自然语言处理(NLP)数据集汇总(附下载链接)

23.自然语言处理(NLP)数据集汇总 2(附下载链接)

24.自然语言处理(NLP)数据集汇总 3(附下载链接)

25.自然语言处理(NLP)数据集汇总 4(附下载链接)

🌴 持续更新中……

🚀十、论文投稿相关项目(持续更新中)🎄🎈

1.论文投稿指南——收藏|SCI论文投稿注意事项(提高命中率)

2.论文投稿指南——收藏|SCI论文怎么投?(Accepted)

3.论文投稿指南——收藏|SCI写作投稿发表全流程

4.论文投稿指南——收藏|如何选择SCI期刊(含选刊必备神器)

5.论文投稿指南——SCI选刊

6.论文投稿指南——SCI投稿各阶段邮件模板

7.人工智能前沿——深度学习热门领域(确定选题及研究方向)

8.人工智能前沿——2022年最流行的十大AI技术

9.人工智能前沿——未来AI技术的五大应用领域

10.人工智能前沿——无人自动驾驶技术

11.人工智能前沿——AI技术在医疗领域的应用

12.人工智能前沿——随需应变的未来大脑

13.目标检测算法——深度学习知识简要普及

14.目标检测算法——10种深度学习框架介绍

15.目标检测算法——为什么我选择PyTorch?

16.知识经验分享——超全激活函数解析(数学原理+优缺点)

17.知识经验分享——卷积神经网络(CNN)

18.海带软件分享——Office 2021全家桶安装教程(附报错解决方法)

19.海带软件分享——日常办公学习软件分享(收藏)

20.论文投稿指南——计算机视觉 (Computer Vision) 顶会归纳

21.论文投稿指南——中文核心期刊

22.论文投稿指南——计算机领域核心期刊

23.论文投稿指南——中文核心期刊推荐(计算机技术)

24.论文投稿指南——中文核心期刊推荐(计算机技术2)

25.论文投稿指南——中文核心期刊推荐(计算机技术3)

26.论文投稿指南——中文核心期刊推荐(电子、通信技术)

27.论文投稿指南——中文核心期刊推荐(电子、通信技术2)

28.论文投稿指南——中文核心期刊推荐(电子、通信技术3)

29.论文投稿指南——中文核心期刊推荐(机械、仪表工业)

30.论文投稿指南——中文核心期刊推荐(机械、仪表工业2)

31.论文投稿指南——中文核心期刊推荐(机械、仪表工业3)

32.论文投稿指南——中国(中文EI)期刊推荐(第1期)

33.论文投稿指南——中国(中文EI)期刊推荐(第2期)

34.论文投稿指南——中国(中文EI)期刊推荐(第3期)

35.论文投稿指南——中国(中文EI)期刊推荐(第4期)

36.论文投稿指南——中国(中文EI)期刊推荐(第5期)

37.论文投稿指南——中国(中文EI)期刊推荐(第6期)

38.论文投稿指南——中国(中文EI)期刊推荐(第7期)

39.论文投稿指南——中国(中文EI)期刊推荐(第8期)

40.【1】SCI易中期刊推荐——计算机方向(中科院3区)

41.【2】SCI易中期刊推荐——遥感图像领域(中科院2区)

42.【3】SCI易中期刊推荐——人工智能领域(中科院1区)

43.【4】SCI易中期刊推荐——神经科学研究(中科院4区)

44.【5】SCI易中期刊推荐——计算机科学(中科院2区)

45.【6】SCI易中期刊推荐——人工智能&神经科学&机器人学(中科院3区)

46.【7】SCI易中期刊推荐——计算机 | 人工智能(中科院4区)

47.【8】SCI易中期刊推荐——图像处理领域(中科院4区)

48.【9】SCI易中期刊推荐——工程技术-计算机:软件工程(中科院4区)

49.【10】SCI易中期刊推荐——工程技术-计算机:人工智能(中科院2区)

50.【11】SCI易中期刊推荐——计算机方向(中科院4区)

51.【12】SCI易中期刊推荐——计算机信息系统(中科院4区)

🌴 持续更新中……

关于YOLO算法改进&论文投稿可关注并留言博主的CSDN/QQ

>>>一起交流!互相学习!共同进步!<<<

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/35707.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

chatgpt赋能python:Python控制NI板卡

Python控制NI板卡 NI&#xff08;National Instruments&#xff09;是全球领先的测试、测量、控制和自动化解决方案提供商。它的硬件平台、软件工具和应用专业知识与工程师社区结合&#xff0c;形成了一系列完整的产品系列&#xff0c;可帮助工程师快速上手、快速构建各种应用…

基于51单片机的室内湿度加湿温度声光报警智能自动控制装置设计

【ChatGPT】前些天发现了一个巨牛的人工智能学习电子书&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;无广告&#xff0c;忍不住分享一下给大家。&#xff08;点击查看学习资料&#xff09; wx供重浩&#xff1a;创享日记 对话框发送&#xff1a;单片机湿度 获取完整无…

LangChain:LLM应用程序开发(上)——Models、Prompt、Parsers、Memory、Chains

文章目录 一、Models、Prompt、Parsers1.1 环境配置&#xff08;导入openai&#xff09;1.2 辅助函数&#xff08;Chat API : OpenAI&#xff09;1.3 使用OpenAI API进行文本翻译1.4使用LangChain进行文本翻译1.5 使用LangChain解析LLM的JSON输出1.5.1 LangChain输出为string格…

全域电商服务手册(2023)

导读&#xff1a; 《手册》收录内容营销、数字化、代运营、短视频直播、用户运营、金融支付、物流仓储、合规发展、渠道&供应链等领域的优质合作伙伴&#xff0c;为品牌与商家解决全域电商布局过程中遇到的难题。 关注公众号&#xff1a;【互联互通社区】&#xff0c;回复【…

2022中国绿色资本市场绿皮书

导读&#xff1a; 绿色是建设银行新金融行动的生态底色&#xff0c;为充分发挥绿色领域专业优势、引领市场多元创新&#xff0c;建设银行与北京绿金院合作发布《中国绿色资本市场绿皮书》&#xff0c;总结绿色投融资市场实践经验、展望创新产品发展趋势&#xff0c;期待与广大市…

产业分析:2023年电商发展报告

导读&#xff1a; 3年疫情&#xff0c;电商行业风起云涌&#xff0c;直播电商、即时零售、社区团购等新兴电商业态在疫情期间强势崛起&#xff0c;各路玩家激烈角逐&#xff0c;平台更迭轮换速度史无前例&#xff0c;电商格局持续震荡&#xff1b;疫情后&#xff0c;行业形成多…

端到端大模型来袭,自动驾驶的最优解?

最近&#xff0c;人工智能领域最火的莫过于大模型了。 由美国初创企业OpenAI开发的聊天应用ChatGPT引爆市场&#xff0c;生成式AI成为科技市场热点&#xff0c;ChatGPT背后是深度学习大模型&#xff0c;其理解和生成文字的能力超过以往AI产品。全球主要云计算公司例如亚马逊等都…

2023年中国电竞行业研究报告

导读&#xff1a; 报告重点通过对电子竞技市场的电竞游戏产品、电竞赛事、电竞俱乐部、电竞营销、电竞用户等各个因素的分析&#xff0c;从政策及市场环境、市场动态等角度展开对电子竞技行业的洞察&#xff0c;切实反映中国电竞行业现状与未来发展趋势。希望能为相关企业与资本…

2023慕尼黑上海电子展12大科技趋势 技术为王创新为本新动力

“经济下行”、“需求疲弱”、“”信心不足“、”消费通缩“是所有行业绕不过的两座大山&#xff0c;电子行业亦不例外&#xff0c;从“抢芯片”变成“去库存”&#xff0c;凛冽寒气持续至今。整个产业链上下无不在寻找破局点&#xff0c;深挖各个领域能够带来业务增量的机会。…

【发布】ChatGLM又开源了一个6B多模态版本

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; OpenAI 的GPT-4样例中展现出令人印象深刻的多模态理解能力&#xff0c;但是能理解图像的中文开源对话模型仍是空白。 近期&#xff0c;智谱AI 和清华大学 KEG 实验室开源了基于 ChatGLM-6B 的多模态对话模型 Vi…

html实现短信验证的功能,怎样实现短信验证功能

怎样实现短信验证功能 现在很多的app都集成了短信验证码的功能,一般都是用于注册登录或者找回密码.市面上提供短信验证码SDK产品的有很多家,由朋友介绍,我使用了Mob的SMSSDK来集成一下! 首先看了下他们的官方文档,步骤写的很清晰,集成很简单,于是马上写个小demo先试试. 首先是下…

发送验证码

需求&#xff1a; 1.发送按钮点击后&#xff0c;会被禁用&#xff1b; 2.被点击后&#xff0c;按钮里面的内容会变化成1分钟的倒计时&#xff1b; 3.待发送按钮被触发后才可以点击提交按钮&#xff0c;需在验证码框里填写0505&#xff0c;用弹窗提示成功。 实现原理&#xff1…

验证码短信是如何实现的?怎么用短信平台发送验证码短信?

验证码短信在用户注册、用户登录、身份验证等诸多场景运用广泛,用户在输入手机号码后就会接收到平台/商家发送的验证码短信,那么验证码短信是怎么发送的?怎么用短信平台发送验证码短信? 短信验证码需要通过短信验证码接口实现,由于自己开发和运维成本高,通常是通过第三方…

短信发送验证码实现验证

写在前面   你们好&#xff0c;我是小庄。很高兴能和你们一起学习短信发送功能。如果您对Java感兴趣的话可关注我的动态.   写博文是一种习惯&#xff0c;在这过程中能够梳理和巩固知识点。 实现思路&#xff1a;前台将手机号码发送到后台&#xff0c;后台设置随机数&#…

短信接口被恶意调用?企业短信防火墙+【中昱维信】短信验证码【Java】

短信接口被恶意调用&#xff1f;企业短信防火墙【中昱维信】短信验证码【Java】 一、企业短信防火墙的实现1.1 简介1.2 第一步&#xff1a;获取防火墙帐号密钥1.3 第二步&#xff1a;下载防火墙服务器1.4 第三步&#xff1a;业务系统前后端接入1.5丰富可视化实时风险大盘&#…

短信验证码的登录流程

点击上方 "编程技术圈"关注, 星标或置顶一起成长 后台回复“大礼包”有惊喜礼包&#xff01; 每日英文 Empty heart, is the best gift; alone the way, is the most beautiful scenery. 放空的心&#xff0c;是最好的礼物&#xff1b;独走的路&#xff0c;是最美的风…

App发送短信验证码实现

前言&#xff1a; 现如今&#xff0c;电话是接外卖和快递的&#xff0c;短信是用来收验证码的。那么像一般的App里面使用手机号验证码方式进行注册或登录是怎样实现的呢&#xff1f;这篇文章可能帮到你。 1.寻找合适的短信平台 因为三大运营商的限制摆在那里&#xff0c;凭个人…

GPT+时代来临:OpenAI开放GPT3.5模型,1000token仅1毛钱

GPT3.5 Model API 使用指南 今天OpenAI公司开放了最新的GPT3.5模型&#xff1a;gpt-3.5-turbo&#xff0c;也就是目前网页版的ChatGPT使用的模型。而此前OpenAI开放的最新的模型text-davinci-003则是基于GPT3模型构建的。并且价格十分便宜&#xff1a;1000 token/0.002美元&am…

『2023北京智源大会』开幕式以及基础模型前沿技术论坛

『2023北京智源大会』开幕式以及基础模型前沿技术论坛 文章目录 一. 黄铁军丨智源研究院院长1. 大语言模型2. 大语言模型评测体系FlagEval3. 大语言模型生态(软硬件)4. 三大路线通向 AGI(另外2条路径) 二. Towards Machines that can Learn, Reason, and Plan(杨立昆丨图灵奖得…

超级AI大脑:全能型学习助理

有句话说在知识的海洋里渴死&#xff0c;说的就是面对海量知识不知如何获取 进而可以理解为不知道如何学习 而现在我们迎来了一个超级大脑&#xff0c; 一个几乎帮助你深度学习的全能助理。 你可以询问超级AI大脑任何内容&#xff0c;回答常常会令你惊喜&#xff1a; 文案创作&…