基于matlab的不同边缘检测算子的边缘检测

1 原理

1.1 边缘检测概述

边缘检测是图像处理和计算机视觉中的基本问题,其目的在于标识数字图像中亮度变化明显的点。这些变化通常反映了图像属性的重要事件和变化,如深度不连续、表面方向不连续、物质属性变化和场景照明变化等。边缘检测在特征提取中起着关键作用,因为它能够大幅度地减少数据量,并剔除不相关的信息,同时保留图像重要的结构属性。

1.2 Prewitt算子

Prewitt算子是一种一阶微分算子的边缘检测。它利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

公式表示:
对于数字图像f(x,y),Prewitt算子的定义如下:
G(i) = | [f(i-1,j-1) + f(i-1,j) + f(i-1,j+1)] - [f(i+1,j-1) + f(i+1,j) + f(i+1,j+1)] |
G(j) = | [f(i-1,j+1) + f(i,j+1) + f(i+1,j+1)] - [f(i-1,j-1) + f(i,j-1) + f(i+1,j-1)] |

1.3 Roberts算子

Roberts算子由Lawrence Roberts在1963年提出,基于离散微分的原理,通过计算图像上相邻像素点之间的差异来检测边缘。它使用两个2x2的模板进行卷积操作。

模板表示:
Gx = [[1, 0], [0, -1]]
Gy = [[0, 1], [-1, 0]]

1.4 Sobel算子

Sobel算子是一种一阶导数的边缘检测算子,在算法实现过程中,通过3×3模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。

公式表示:
Sx = (Z1 + 2Z2 + Z3) - (Z7 + 2Z8 + Z9)
Sy = (Z1 + 2Z4 + Z7) - (Z3 + 2Z6 + Z9)

1.5 LoG(Laplacian of Gaussian)算子

LoG算子结合了高斯平滑和拉普拉斯算子。首先使用高斯滤波器对图像进行平滑处理,然后利用拉普拉斯算子进行边缘检测。这样可以减少噪声对边缘检测的影响。

高斯平滑公式(见参考文章7的高斯滤波公式)
LoG算子公式(见参考文章6的LoG函数表达式)

1.6 Canny边缘检测算法

Canny边缘检测算法是一个多级检测算法,结合了高斯滤波、梯度的强度和方向、双阈值处理和边缘跟踪等技术。其目标是找到一个最优的边缘检测算法。

由于Canny边缘检测算法涉及多个步骤和复杂的计算,其完整的公式和算法流程较为复杂,无法在此处直接给出。但基本思想是利用高斯滤波平滑图像,计算梯度的强度和方向,然后通过双阈值处理和边缘跟踪来确定边缘。

以上即为边缘检测及其常见算子的简要介绍和原理公式。在实际应用中,可以根据具体需求和图像特性选择合适的边缘检测算法。

2 代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%% 图像预处理-高斯滤波与图像去噪 
I = imread('test.jpeg');  
if size(I, 3) == 3  % 如果是彩色图像,转换为灰度图像  I = rgb2gray(I);  
end  
I = im2double(I); % 将图像转换为双精度,范围在[0, 1]    
% 对图像进行高斯滤波  
h = fspecial('gaussian', [5 5], 1); % 创建一个5x5的高斯滤波器,标准差为1  
I_gaussian = imfilter(I, h);    
% 绘制原始图像和原始直方图  
figure;  
subplot(3, 2, 1),imshow(I);  
title('原始图像');   
subplot(3, 2, 2),imhist(I);  
title('原始直方图');  
%  绘制高斯滤波后的图像和对应的直方图  
subplot(3, 2, 3),imshow(I_gaussian);  
title('高斯滤波后的图像');  
subplot(3, 2, 4),imhist(I_gaussian);  
title('高斯滤波后的直方图');   
% 去噪使用中值滤波  
I_denoised = medfilt2(I); % 使用中值滤波进行去噪    
% 绘制去噪后的图像和对应的直方图  
subplot(3, 2, 5),imshow(I_denoised);  
title('去噪后的图像');  
subplot(3, 2, 6),imhist(I_denoised);  
title('去噪后的直方图');  
%% %% 边缘检测
% 读取图像  
I6 = imread('test.jpeg'); 
I6 = rgb2gray(I6); % 转换为灰度图像   
% 初始化figure和subplot  
figure;  
% 绘制原始图像作为对比  
subplot(3, 2, 1);  
imshow(I6);  
title('原始图像');    
% Prewitt边缘检测  
BW_prewitt = edge(I6, 'prewitt');  
subplot(3, 2, 2);  
imshow(BW_prewitt);  
title('Prewitt 边缘检测');    
% Roberts边缘检测  
BW_roberts = edge(I6, 'roberts');  
subplot(3, 2, 3);  
imshow(BW_roberts);  
title('Roberts 边缘检测');  
% Sobel边缘检测  
BW_sobel = edge(I6, 'sobel');  
subplot(3, 2, 4);  
imshow(BW_sobel);  
title('Sobel 边缘检测');   
% LoG边缘检测  
BW_log = edge(I6, 'log');  
subplot(3, 2, 5);  
imshow(BW_log);  
title('LoG 边缘检测');   
% Canny边缘检测(需要设置阈值)  
BW_canny = edge(I6, 'canny', [0.4, 0.7]); % 这里设置了高低两个阈值  
subplot(3, 2, 6);  
imshow(BW_canny);  
title('Canny 边缘检测');  
% 添加标签和标题  
set(gcf, 'Name', '边缘检测算子比较');
%% 图像预处理-灰度化与图像反白
I1 = imread('test.jpeg');  
figure;
subplot(2,2,1);%用subplot建立多个子图
imshow(I1);%用imshow显示图像I
title('原始彩色图像');  
J=rgb2gray(I1);%将彩色图像工转换为灰度图像J
subplot(2,2,2);imshow(J);% 用imshow显示图像J
title('灰度图像');  
subplot(2,2,3);imhist(J);% 计算和显示灰度图像J的灰度直方图
title('灰度直方图');  
Ave = mean2(J);%用mean2函数求图像J的均值
SD = std2(double(J));%用std2函数求图像J的均值
s= size(J);%图像大小为s(1)×s(2)
all_white = 255*ones(s(1),s(2));%设置全部为白色灰度255
all_white_uint8=uint8(all_white);%将double类型矩阵转化为uint8类型矩阵
K= imsubtract(all_white_uint8,J);%图像相减得反白图像K
subplot(2,2,4);imshow(K);%用imshow显示图像K
title('反白图像');  %% 线性变换进行图像增强
I2= imread('test.jpeg');
J2=rgb2gray(I2);
figure;
subplot(2,2,1), imshow(J2) ;
title('原始图像');  
subplot(2,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图');  
K = imadjust(J2,[0.4 0.6],[]);%使用imadjust函数进行灰度的线性变换
subplot(2,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(2,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');%% 伽马变换进行图像增强
figure;
subplot(3,2,1), imshow(J2) ;
title('原始图像');  
subplot(3,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图'); 
gamma = 0.5;
I_gamma = imadjust(J2, [], [], gamma);  
subplot(3,2,3),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(3,2,4),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
%% % 对数变换进行图像增强  
c = 0.5; % 控制参数,用于避免log(0)  
I_log = c * log(1 + double(J2)) / log(256);  
I_log = im2uint8(I_log);    
subplot(3,2,5);  
imshow(I_log);  
title('对数变换后的图像');
subplot(3,2,6);  
imhist(I_log);
title('对数变换后的灰度直方图');
%% 
figure('Position',[50 50 800 600])
subplot(4,2,1), imshow(J2);
title('原始图像');  
subplot(4,2,2), imhist(J2);
title('原始灰度直方图'); 
subplot(4,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(4,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');
subplot(4,2,5),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(4,2,6),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
subplot(4,2,7),imshow(I_log);  
title('对数变换后的图像');
subplot(4,2,8),imhist(I_log);
title('对数变换后的灰度直方图');
%% 直方图均衡化进行图像增强
I3 = imread('test.jpeg'); % 读取图像  
I_gray = rgb2gray(I3); % 转换为灰度图像    
% 直方图均衡化  
I_eq = histeq(I_gray);    
% 显示原始图像和增强后的图像  
figure;
subplot(2, 2, 1),imshow(I_gray);
title('原始图像'); 
subplot(2, 2, 2);  
imhist(I_gray),title('原始灰度直方图'); 
subplot(2, 2, 3),imshow(I_eq);  
title('直方图均衡化后的图像');
subplot(2, 2, 4),imhist(I_eq);  
title('直方图均衡化后的灰度直方图');

3 运行结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/357308.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows环境利用 OpenCV 中 CascadeClassifier 分类器识别人眼 c++

Windows环境中配置OpenCV 关于在Windows环境中配置opencv的说明,具体可以参考:VS2022 配置OpenCV开发环境详细教程。 CascadeClassifier 分类器 CascadeClassifier 是 OpenCV 库中的一个类,它用于实现一种快速的物体检测算法,称…

AlmaLinux 更换CN镜像地址

官方镜像列表 官方列表&#xff1a;https://mirrors.almalinux.org/CN 开头的站点&#xff0c;不同区域查询即可 一键更改镜像地址脚本 以下是更改从默认更改到阿里云地址 cat <<EOF>>/AlmaLinux_Update_repo.sh #!/bin/bash # -*- coding: utf-8 -*- # Author:…

多功能投票系统(ThinkPHP+FastAdmin+Uniapp)

让决策更高效&#xff0c;更民主&#x1f31f; ​基于ThinkPHPFastAdminUniapp开发的多功能系统&#xff0c;支持图文投票、自定义选手报名内容、自定义主题色、礼物功能(高级授权)、弹幕功能(高级授权)、会员发布、支持数据库私有化部署&#xff0c;Uniapp提供全部无加密源码…

leetcode 二分查找·系统掌握 有效的完全平方数

题目&#xff1a; 题解&#xff1a; 就是一个非常普通的二分查找&#xff0c;但是需要注意的是查找的上下界&#xff0c;因为是完全平方&#xff0c;所以可以把上界设为这个数的一半&#xff0c;但是要特殊处理num等于1的时候。 bool isPerfectSquare(int num) {if(num1)retur…

四川汇聚荣科技有限公司靠谱吗?

在如今这个信息爆炸的时代&#xff0c;了解一家公司是否靠谱对于消费者和合作伙伴来说至关重要。四川汇聚荣科技有限公司作为一家位于中国西部地区的企业&#xff0c;自然也受到了人们的关注。那么&#xff0c;这家公司究竟如何呢?接下来&#xff0c;我们将从多个角度进行深入…

Repetition Improves Language Model Embeddings论文阅读笔记

文章提出了一种提高decoder-only LLM的embedding能力的方法&#xff0c;叫echo embeddingslast-token pooling&#xff08;即直接选最后一个token作为句子的embedding&#xff09;和直接mean pooling都不如文章提出的echo embedding&#xff0c;做法是把句子重复两次&#xff0…

关于微信没有接入鸿蒙NEXT的思考

6月21日,纯血鸿蒙发布,国内的质疑声终于停止,不再被人喊叫换皮 Android 了.就连编程语言都是华为自研的。 可是发布会后微信却成了热点,因为余承东在感谢了一圈互联网企业,如:淘宝、支付宝、美团、京东、抖音、今日头条、钉钉、小红书、微博、B站、高德、WPS等等. 唯独没有感…

如何设置Excel单元格下拉列表

如何设置Excel单元格下拉列表 在Excel中设置单元格下拉列表可以提高数据输入的准确性和效率。以下是创建下拉列表的步骤&#xff1a; 使用数据验证设置下拉列表&#xff1a; 1. 选择单元格&#xff1a; 选择你想要设置下拉列表的单元格或单元格区域。 2. 打开数据验证&…

MK的前端精华笔记

文章目录 MK的前端精华笔记第一阶段&#xff1a;前端基础入门1、&#xff08;1&#xff09;、&#xff08;2&#xff09;、 2、3、4、5、6、7、 第二阶段&#xff1a;组件化与移动WebAPP开发1、&#xff08;1&#xff09;、&#xff08;2&#xff09;、 2、3、4、5、6、7、 第三…

textarea标签改写为富文本框编辑器KindEditor

下载 - KindEditor - 在线HTML编辑器 KindEditor的简单使用-CSDN博客 一、 Maven需要的依赖&#xff1a; 如果依赖无法下载&#xff0c;可以多添加几个私服地址&#xff1a; 在Maven框架中加入镜像私服 <mirrors><!-- mirror| Specifies a repository mirror site to…

【PyQt5】python可视化开发:PyQt5介绍,开发环境搭建快速入门

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

腾讯大牛,手把手教你建立自己的Android学习知识体系,附实例+面经+建议!

主要让我介绍了我的项目&#xff0c;又出了几个题让我做。 项目就是让我介绍我科研做的那个流式二维码数据传输系统&#xff0c;我介绍的时候面试官听的很仔细&#xff0c;让我详细介绍了拍到的二维码是如何定位、采样和识别转换成二进制流的。然后问我传输速率是多少&#xff…

day41--Redis(三)高级篇之最佳实践

Redis高级篇之最佳实践 今日内容 Redis键值设计批处理优化服务端优化集群最佳实践 1、Redis键值设计 1.1、优雅的key结构 Redis的Key虽然可以自定义&#xff0c;但最好遵循下面的几个最佳实践约定&#xff1a; 遵循基本格式&#xff1a;[业务名称]:[数据名]:[id]长度不超过…

Nuxt快速学习开发---Nuxt3视图Views

Views Nuxt提供了几个组件层来实现应用程序的用户界面 默认情况下&#xff0c;Nuxt 会将app.vue文件视为入口点并为应用程序的每个路由呈现其内容 应用程序.vue <template> <div> <h1>Welcome to the homepage</h1> </div> </template> …

【GD32F303红枫派使用手册】第二十二节 IIC-IIC OLED显示实验

22.1 实验内容 通过本实验主要学习以下内容&#xff1a; OLED驱动原理 IIC驱动OLED显示操作 22.2 实验原理 OLED模块的驱动芯片为SSD1306&#xff0c;其显存大小总共为 128*64bit 大小&#xff0c;SSD1306 将这些显存分为了 8 页&#xff0c;其对应关系如下所示&#xff1…

Docker 下载与安装以及配置

安装yum工具 yum install -y yum-ulits配置yum源 阿里云源 yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo安装Docker 17.03后为两个版本&#xff1a; 社区版&#xff08;Community Edition&#xff0c;缩写为 CE&#x…

基于深度学习的图像识别技术与应用是如何?

基于深度学习的图像识别技术与应用在当今社会中扮演着越来越重要的角色。以下是对该技术与应用的详细解析&#xff1a; 一、技术原理 深度学习是一种模拟人脑处理和解析数据的方式的技术和方法论。在图像识别领域&#xff0c;深度学习主要通过深度神经网络&#xff08;如卷积…

使用 Ubuntu x86_64 平台交叉编译适用于 Linux aarch64(arm64) 平台的 QT5(包含OpenGL支持) 库

使用 Ubuntu AMD64 平台交叉编译适用于 Linux ARM64 平台的 QT5(包含 OpenGL/WebEngine 支持) 库 目录 使用 Ubuntu AMD64 平台交叉编译适用于 Linux ARM64 平台的 QT5(包含 OpenGL/WebEngine 支持) 库写在前面前期准备编译全流程1. 环境搭建2. 复制源码包并解压&#xff0c;创…

内容安全复习 8 - 视觉内容伪造与检测

文章目录 研究背景内容伪造方法虚假人脸生成人脸替换属性编辑表情重演跨模态人脸编辑 伪造检测方法眨眼检测交互式人脸活体检测一些了解方法挑战 研究背景 图像内容篡改造成新闻报道的偏颇易导致社会和公共秩序的不安&#xff0c;对公共安全产生不良影响。 造成的影响&#x…

JVM专题六:JVM的内存模型

前面我们通过Java是如何编译、JVM的类加载机制、JVM类加载器与双亲委派机制等内容了解到了如何从我们编写的一个.Java 文件最终加载到JVM里的&#xff0c;今天我们就来剖析一下这个Java的‘中介平台’JVM里面到底长成啥样。 JVM的内存区域划分 Java虚拟机&#xff08;JVM&…