【Python机器学习实战】 | 基于线性回归以及支持向量机对汽车MPG与自重进行回归预测

🎩 欢迎来到技术探索的奇幻世界👨‍💻

📜 个人主页:@一伦明悦-CSDN博客

✍🏻 作者简介 C++软件开发、Python机器学习爱好者

🗣️ 互动与支持💬评论      👍🏻点赞      📂收藏     👀关注+

如果文章有所帮助,欢迎留下您宝贵的评论,

点赞加收藏支持我,点击关注,一起进步!

引言

线性回归和支持向量机(SVM)是常见的机器学习算法,用于回归和分类任务。以下是它们的介绍与区别:

线性回归(Linear Regression):

  1. 介绍

    • 线性回归是一种用于建立输入特征与连续输出之间关系的线性模型。
    • 通过拟合一个线性函数来预测目标变量的数值。
    • 目标是找到使模型预测值与实际值之间误差的平方和最小化的最优参数。
  2. 特点

    • 简单且直观,易于理解和实现。
    • 适用于连续数值预测任务。
    • 可以考虑多个特征对目标变量的影响。
  3. 适用场景

    • 预测房价、销售量等连续值问题。
    • 理解特征对目标变量的影响。

支持向量机(Support Vector Machine,SVM):

  1. 介绍

    • SVM是一种用于分类和回归的监督学习算法。
    • 在特征空间中找到一个最优的超平面来分隔不同类别的样本。
    • 可以通过核技巧处理非线性分类任务。
  2. 特点

    • 适用于小样本、高维度的数据集。
    • 具有较好的泛化能力,适用于解决非线性可分问题。
    • 引入核函数可扩展到处理复杂数据集。
  3. 适用场景

    • 二分类、多分类问题。
    • 处理非线性分类问题。
    • 图像识别、文本分类等领域。

区别:

  1. 目标

    • 线性回归旨在建立输入特征与连续输出之间的线性关系。
    • SVM旨在找到一个最优的超平面来分隔不同类别的样本。
  2. 任务

    • 线性回归解决的是回归问题,预测连续数值。
    • SVM可用于分类和回归任务,主要应用于分类问题。
  3. 拟合方式

    • 线性回归通过拟合直线或超平面来逼近数据。
    • SVM通过寻找间隔最大化的超平面来分隔不同类别的样本。
  4. 处理非线性问题

    • 线性回归适用于线性关系,不擅长处理非线性数据。
    • SVM可以通过核技巧处理非线性分类问题。

正文

01-线性不可分下的支持向量机最大边界超平面

这段代码是用于生成和绘制一个支持向量机(SVM)模型的图示。它使用scikit-learn库中的make_circles函数生成了一个具有两个特征的数据集,该数据集由两个同心圆组成,这代表了两个类别。然后,它将数据集分为训练集和测试集,并使用支持向量机模型进行训练和预测。最后,它绘制了训练集、测试集、支持向量以及模型决策边界的图示。

下面是这段代码的详细解释:

  1. 导入必要的模块:
%matplotlib inline
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from sklearn.datasets import make_circles
from sklearn.model_selection import train_test_split
from sklearn import svm
  1. 生成数据集:
N = 100
X, Y = make_circles(n_samples=N, noise=0.2, factor=0.5, random_state=123)

make_circles函数生成了一个具有两个特征的数据集,其中包含两个同心圆,代表两个类别。noise参数用于控制圆上的点与圆中心的距离,factor参数用于控制两个圆之间的距离。

  1. 划分训练集和测试集:
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.85, random_state=1)

train_test_split函数将数据集分为85%的训练集和15%的测试集。

  1. 创建网格以展示决策边界:
X1, X2 = np.meshgrid(np.linspace(X_train[:, 0].min(), X_train[:, 0].max(), 500),np.linspace(X_train[:, 1].min(), X_train[:, 1].max(), 500))
X0 = np.hstack((X1.reshape(len(X1) * len(X))))
#本章需导入的模块
import numpy as np
from numpy import random
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import warnings
warnings.filterwarnings(action = 'ignore')
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']  #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=False
from sklearn.datasets import make_classification,make_circles,make_regression
from sklearn.model_selection import train_test_split,KFold
import sklearn.neural_network as net
import sklearn.linear_model as LM
from scipy.stats import multivariate_normal
from sklearn.metrics import r2_score,mean_squared_error,classification_report
from sklearn import svm
import osN=100
X,Y=make_circles(n_samples=N,noise=0.2,factor=0.5,random_state=123)
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,train_size=0.85, random_state=1)
X1,X2= np.meshgrid(np.linspace(X_train[:,0].min(),X_train[:,0].max(),500),np.linspace(X_train[:,1].min(),X_train[:,1].max(),500))
X0=np.hstack((X1.reshape(len(X1)*len(X2),1),X2.reshape(len(X1)*len(X2),1)))
fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(15,12))
for C,ker,H,L in [(1,'poly',0,0),(1,'rbf',0,1),(1000,'poly',1,0),(1000,'rbf',1,1)]:modelSVC=svm.SVC(kernel=ker,random_state=123,C=C) modelSVC.fit(X_train,Y_train)Y0=modelSVC.predict(X0)axes[H,L].scatter(X0[np.where(Y0==1),0],X0[np.where(Y0==1),1],c='lightgray')axes[H,L].scatter(X0[np.where(Y0==0),0],X0[np.where(Y0==0),1],c='mistyrose')for k,m in [(1,'^'),(0,'o')]:axes[H,L].scatter(X_train[Y_train==k,0],X_train[Y_train==k,1],marker=m,s=40)axes[H,L].scatter(X_test[Y_test==k,0],X_test[Y_test==k,1],marker=m,s=40,c='r',edgecolors='g')axes[H,L].scatter(modelSVC.support_vectors_[:,0],modelSVC.support_vectors_[:,1],marker='o',c='b',s=120,alpha=0.3)axes[H,L].set_xlabel("X1")axes[H,L].set_ylabel("X2")axes[H,L].set_title("线性不可分下的支持向量机最大边界超平面(C=%.1f,Kernal=%s,测试误差=%.2f)"%(C,ker,1-modelSVC.score(X_test,Y_test)))axes[H,L].grid(True,linestyle='-.')
plt.savefig("../4.png", dpi=500) 

运行结果如下图所示: 

02-100个样本观测点的SVR和线性回归

这段代码是一个完整的数据分析和可视化流程,主要使用了Python中常用的数据科学和机器学习库。让我逐步解释每部分的作用和含义:

  1. 模块导入

    import numpy as np
    from numpy import random
    import pandas as pd
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    import warnings
    warnings.filterwarnings(action='ignore')
    %matplotlib inline
    
    • 导入了常用的科学计算库(如NumPy、Pandas、Matplotlib)、三维绘图模块和警告处理。
    • %matplotlib inline 用于在Jupyter Notebook中直接显示Matplotlib生成的图形。
  2. 中文显示设置

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 解决中文显示乱码问题
    plt.rcParams['axes.unicode_minus'] = False    # 解决负号显示问题
    
  3. 数据生成与划分

    N = 100
    X, Y = make_regression(n_samples=N, n_features=1, random_state=123, noise=50, bias=0)
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.85, random_state=123)
    
    • 使用 make_regression 生成具有噪声的回归数据,然后将数据划分为训练集和测试集。
  4. 第一个图形绘制

    plt.scatter(X_train, Y_train, s=20)
    plt.scatter(X_test, Y_test, s=20, marker='*')
    plt.title("100个样本观测点的SVR和线性回归")
    plt.xlabel("X")
    plt.ylabel("Y")
    plt.savefig("../3.png", dpi=500)
    
    • 绘制散点图,展示训练集和测试集数据点。
    • 设置图标题和坐标轴标签,并保存图形为 “…/3.png”。
  5. 线性回归模型拟合

    modelLM = LM.LinearRegression()
    modelLM.fit(X_train, Y_train)
    
    • 使用线性回归模型拟合训练数据。
  6. 多个SVR模型绘制

    fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 9))
    for C, E, H, L in [(1, 0.1, 0, 0), (1, 100, 0, 1), (100, 0.1, 1, 0), (10000, 0.01, 1, 1)]:modelSVR = svm.SVR(C=C, epsilon=E)modelSVR.fit(X_train, Y_train)axes[H, L].scatter(X_train, Y_train, s=20)axes[H, L].scatter(X_test, Y_test, s=20, marker='*')axes[H, L].scatter(X[modelSVR.support_], Y[modelSVR.support_], marker='o', c='b', s=120, alpha=0.2)axes[H, L].plot(X, modelSVR.predict(X), linestyle='-', label="SVR")axes[H, L].plot(X, modelLM.predict(X), linestyle='--', label="线性回归", linewidth=1)axes[H, L].legend()ytrain = modelSVR.predict(X_train)ytest = modelSVR.predict(X_test)axes[H, L].set_title("SVR(C=%d,epsilon=%.2f,训练MSE=%.2f,测试MSE=%.2f)" % (C, E, mean_squared_error(Y_train, ytrain),mean_squared_error(Y_test, ytest)))axes[H, L].set_xlabel("X")axes[H, L].set_ylabel("Y")axes[H, L].grid(True, linestyle='-.')
    
    • 创建一个包含四个子图的图形布局。
    • 对每个子图,使用不同的参数C和epsilon训练SVR模型,并绘制训练集和测试集数据点,支持向量,SVR和线性回归模型的拟合曲线。
    • 设置图标题,显示训练和测试集的均方误差(MSE)。
  7. 保存第二个图形

    plt.savefig("../4.png", dpi=500)
    
    • 将包含四个子图的图形保存为 “…/4.png”,分辨率为500 dpi。

这段代码展示了如何使用Python进行回归分析和可视化,比较了SVR和线性回归模型在不同参数设置下的效果,并通过图形直观地展示了数据点、拟合曲线以及模型的评估结果。

#本章需导入的模块
import numpy as np
from numpy import random
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import warnings
warnings.filterwarnings(action = 'ignore')
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']  #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=False
from sklearn.datasets import make_classification,make_circles,make_regression
from sklearn.model_selection import train_test_split,KFold
import sklearn.neural_network as net
import sklearn.linear_model as LM
from scipy.stats import multivariate_normal
from sklearn.metrics import r2_score,mean_squared_error,classification_report
from sklearn import svm
import osN=100
X,Y=make_regression(n_samples=N,n_features=1,random_state=123,noise=50,bias=0)
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,train_size=0.85, random_state=123)
plt.scatter(X_train,Y_train,s=20)
plt.scatter(X_test,Y_test,s=20,marker='*')
plt.title("100个样本观测点的SVR和线性回归")
plt.xlabel("X")
plt.ylabel("Y")
plt.savefig("../3.png", dpi=500)        
modelLM=LM.LinearRegression()
modelLM.fit(X_train,Y_train)
X[:,0].sort()
fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(12,9))
for C,E,H,L in [(1,0.1,0,0),(1,100,0,1),(100,0.1,1,0),(10000,0.01,1,1)]:modelSVR=svm.SVR(C=C,epsilon=E)modelSVR.fit(X_train,Y_train)axes[H,L].scatter(X_train,Y_train,s=20)axes[H,L].scatter(X_test,Y_test,s=20,marker='*')    axes[H,L].scatter(X[modelSVR.support_],Y[modelSVR.support_],marker='o',c='b',s=120,alpha=0.2)axes[H,L].plot(X,modelSVR.predict(X),linestyle='-',label="SVR")axes[H,L].plot(X,modelLM.predict(X),linestyle='--',label="线性回归",linewidth=1)axes[H,L].legend()ytrain=modelSVR.predict(X_train)ytest=modelSVR.predict(X_test)axes[H,L].set_title("SVR(C=%d,epsilon=%.2f,训练MSE=%.2f,测试MSE=%.2f)"%(C,E,mean_squared_error(Y_train,ytrain),mean_squared_error(Y_test,ytest)))axes[H,L].set_xlabel("X")axes[H,L].set_ylabel("Y")axes[H,L].grid(True,linestyle='-.')plt.savefig("../4.png", dpi=500) 

运行结果如下图所示: 

03-老人的活动进行统计

这段代码主要实现了以下功能:

  1. 导入必要的模块:

    • 导入 numpy 库,并从中导入 random 模块。
    • 导入 pandas 库,并重命名为 pd。
    • 导入 matplotlib.pyplot 库,并重命名为 plt。
    • 导入 mpl_toolkits.mplot3d 库中的 Axes3D 模块。
    • 使用 warnings 库来过滤警告信息。
    • 设置 matplotlib 图表显示中文。
    • 导入 sklearn 中的一些模块和函数。
    • 导入 scipy.stats 中的 multivariate_normal 函数。
    • 导入 sklearn.metrics 中的一些评估指标函数。
    • 导入 os 模块。
  2. 定义文件路径 path,并列出该路径下的所有文件名。

  3. 创建空的 DataFrame data 用于存储数据,包括列:‘TimeStamp’, ‘frontal’, ‘vertical’, ‘lateral’, ‘SensorID’, ‘RSSI’, ‘Phase’, ‘Frequency’, ‘Activity’, ‘ID’, ‘Gender’。

  4. 遍历文件名列表,逐个读取文件中的数据,并将每个文件的数据添加到 data 中,同时为数据添加 ‘ID’ 和 ‘Gender’ 两列。

  5. 根据 ‘Activity’ 列中的不同活动类型统计数量,并绘制柱状图展示老人的体位状态,其中1表示’坐在床上’,2表示’坐在椅子上’,3表示’躺在床上’,4表示’行走’。

  6. 将 ‘Activity’ 映射为二分类标签 ‘ActivityN’,分为0(‘坐在床上’或’坐在椅子上’)和1(‘躺在床上’或’行走’),统计并绘制体位状态的饼状图。

  7. 将绘制的体位状态图保存为文件’4.png’,并显示在输出中。

综上所述,这段代码的作用是读取多个文件中的数据,对老人的活动进行统计,并通过可视化展示老人不同体位状态的情况,最终将结果保存为一幅图片。

#本章需导入的模块
import numpy as np
from numpy import random
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import warnings
warnings.filterwarnings(action = 'ignore')
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']  #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=False
from sklearn.datasets import make_classification,make_circles,make_regression
from sklearn.model_selection import train_test_split,KFold
import sklearn.neural_network as net
import sklearn.linear_model as LM
from scipy.stats import multivariate_normal
from sklearn.metrics import r2_score,mean_squared_error,classification_report
from sklearn import svm
import os#path='C:/Users/xuewe/《Python机器学习:数据建模与分析》代码/健康物联网/'
path='D:/代码与数据/健康物联网/'
#print(os.path.dirname(path)) 返回文件路径 
#cwd=os.getcwd()  得到当前目录
#os.path.join(dirname, filename)
#os.walk(path) filenames=os.listdir(path=path)
data=pd.DataFrame(columns=['TimeStamp', 'frontal', 'vertical', 'lateral', 'SensorID', 'RSSI','Phase', 'Frequency', 'Activity', 'ID', 'Gender'])
i=1
for filename in filenames:tmp=pd.read_csv(path+filename)tmp['ID']=itmp['Gender']=filename[-5]i+=1data=data.append(tmp)label=['坐在床上','坐在椅子上','躺在床上','行走']
countskey=data['Activity'].value_counts().index
plt.bar(np.unique(data['Activity']),data['Activity'].value_counts())
plt.xticks([1,2,3,4],[label[countskey[0]-1],label[countskey[1]-1],label[countskey[2]-1],label[countskey[3]-1]])
plt.title("老人的体位状态")
plt.show()
data['ActivityN']=data['Activity'].map({3:0,1:0,2:1,4:1})
plt.bar([1,2],data['ActivityN'].value_counts())
plt.xticks([1,2],['安全体位','风险体位'])
plt.title("老人的体位状态")plt.savefig("../4.png", dpi=500) 
plt.show()

Y=data['Activity'].astype(int)
X=data[['frontal', 'vertical', 'lateral', 'RSSI']]
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,train_size=0.70, random_state=1)
for ker in ['poly','rbf']:modelSVC=svm.SVC(kernel=ker,random_state=123) modelSVC.fit(X_train,Y_train)print("测试误差=%f(%s)"%(1-modelSVC.score(X_test,Y_test),ker))print(classification_report(Y_test,modelSVC.predict(X_test)))
测试误差=0.056962(poly)precision    recall  f1-score   support1       0.57      0.71      0.63       3682       0.00      0.00      0.00       1703       0.97      1.00      0.98      61474       0.00      0.00      0.00       109accuracy                           0.94      6794macro avg       0.38      0.43      0.40      6794
weighted avg       0.91      0.94      0.93      6794测试误差=0.095231(rbf)precision    recall  f1-score   support1       0.00      0.00      0.00       3682       0.00      0.00      0.00       1703       0.90      1.00      0.95      61474       0.00      0.00      0.00       109accuracy                           0.90      6794macro avg       0.23      0.25      0.24      6794
weighted avg       0.82      0.90      0.86      6794

04-基于线性回归以及支持向量机对汽车MPG与自重进行回归预测

这段代码实现了以下功能:

  1. 导入必要的模块:

    • 导入 numpy 库,并从中导入 random 和 math 模块。
    • 导入 pandas 库,并重命名为 pd。
    • 导入 matplotlib.pyplot 库,并重命名为 plt。
    • 导入 mpl_toolkits.mplot3d 库中的 Axes3D 模块。
    • 使用 warnings 库来过滤警告信息。
    • 设置 matplotlib 图表显示中文。
    • 导入 sklearn 中的一些模块和函数。
    • 导入 scipy.stats 中的 multivariate_normal 函数。
    • 导入 sklearn.metrics 中的一些评估指标函数。
    • 导入 sklearn 中的支持向量回归模型 svm。
    • 导入 os 模块。
  2. 读取名为 ‘汽车MPG.csv’ 的数据文件,并丢弃缺失值。

  3. 选择数据中的 ‘weight’ 和 ‘horsepower’ 列作为特征 X,‘MPG’ 列作为目标变量 Y。初始化一个测试点 X0 和对应的预测目标值 Y0。

  4. 建立线性回归模型 modelLM 和支持向量回归模型 modelSVR。

  5. 创建用于绘图的子图,设置子图的大小为 2x2。

  6. 使用 KFold 进行两折交叉验证,分别在训练集上训练线性回归模型和支持向量回归模型,并对测试点进行预测。

  7. 在每个子图中绘制:

    • 左上角:训练数据点的散点图;
    • 右上角:线性回归和支持向量回归的预测结果;
    • 左下角:在训练数据上的 MPG 与自重 的关系散点图以及测试点的预测结果;
    • 右下角:线性回归和支持向量回归在测试点上的预测结果。
  8. 保存绘制的图像为文件’4.png’。

综上所述,这段代码的主要作用是使用线性回归和支持向量回归模型预测汽车的燃油效率(MPG),并通过交叉验证和可视化展示模型在训练集上的拟合情况和在测试点上的预测效果。

#本章需导入的模块
import numpy as np
from numpy import random,math
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import warnings
warnings.filterwarnings(action = 'ignore')
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']  #解决中文显示乱码问题
plt.rcParams['axes.unicode_minus']=False
from sklearn.datasets import make_classification,make_circles,make_regression
from sklearn.model_selection import train_test_split,KFold
import sklearn.neural_network as net
import sklearn.linear_model as LM
from scipy.stats import multivariate_normal
from sklearn.metrics import r2_score,mean_squared_error,classification_report
from sklearn import svm
import osdata=pd.read_csv('汽车MPG.csv')
data=data.dropna()
data.head()X=data[['weight','horsepower']]  
X0=[[X.max()[0],X.max()[1]]]
Y0=data['MPG'].mean()
modelLM=LM.LinearRegression()
modelSVR=svm.SVR(C=1000,epsilon=0.01)
yhat1=[]
yhat2=[]
fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(12,10))
kf = KFold(n_splits=2,shuffle=True,random_state=123)  # K折交叉验证法
H=0
for train_index, test_index in kf.split(X): sample=data.iloc[train_index,]    X=sample[['weight','horsepower']]#Y=sample['MPG'].map(lambda x:math.log(x))Y=sample['MPG']modelLM.fit(X,Y)modelSVR.fit(X,Y)yhat1.append(modelLM.predict(X0))yhat2.append(modelSVR.predict(X0))axes[H,0].scatter(sample['weight'],sample['MPG'],s=20,label="训练点")axes[H,0].set_title("MPG与自重(训练集%d)"%(H+1))axes[H,0].set_xlabel("自重")axes[H,0].set_ylabel("MPG")axes[H,0].scatter(X0[0][0],Y0,c='r',s=40,marker='*',label="新数据点")axes[H,0].legend()axes[H,1].scatter(sample['weight'],modelLM.predict(X),s=15,marker='*',c='orange',label="线性回归预测")axes[H,1].scatter(sample['weight'],modelSVR.predict(X),s=15,marker='o',c='blue',label="SVR预测")axes[H,1].set_title("MPG与自重(训练集%d)"%(H+1))axes[H,1].set_xlabel("自重")axes[H,1].set_ylabel("MPG")axes[H,1].scatter(X0[0][0],modelLM.predict(X0),c='r',s=40,marker='<',label="新数据点的线性回归预测")axes[H,1].scatter(X0[0][0],modelSVR.predict(X0),c='r',s=40,marker='>',label="新数据点的SVR预测")  axes[H,1].legend()H+=1     
plt.savefig("../4.png", dpi=500) 

总结

总的来说,线性回归适用于预测连续数值,而支持向量机适用于处理分类问题,并且能够处理非线性分类任务。选择适当的算法取决于数据类型、任务需求和模型复杂度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/357756.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

番外篇 | 基于YOLOv5-RCS的明火烟雾检测 | 源于RCS-YOLO

前言:Hello大家好,我是小哥谈。RCS-YOLO是一种目标检测算法,它是基于YOLOv3算法的改进版本。通过查看RCS-YOLO的整体架构可知,其中包括RCS-OSA模块。RCS-OSA模块在模型中用于堆叠RCS模块,以确保特征的复用并加强不同层之间的信息流动。本文就给大家详细介绍如何将RCS-YOLO…

Validation校验

文章目录 Validation校验作用依赖坐标UserController接收客户端注册用户请求的方法请求参数封装实体User的结构校验分组 Validation校验 作用 服务端接收前端传递的请求从参数的时候&#xff0c;可以对请求参数进行自动校验。 场景&#xff1a;通过postman向服务端发送一个注…

【React】使用Token做路由权限控制

在components/AuthRoute/index.js中 import { getToken } from /utils import { Navigate } from react-router-domconst AuthRoute ({ children }) > {const isToken getToken()if (isToken) {return <>{children}</>} else {return <Navigate to"/…

三十八篇:架构大师之路:探索软件设计的无限可能

架构大师之路&#xff1a;探索软件设计的无限可能 1. 引言&#xff1a;架构的艺术与科学 在软件工程的广阔天地中&#xff0c;系统架构不仅是设计的骨架&#xff0c;更是灵魂所在。它如同建筑师手中的蓝图&#xff0c;决定了系统的结构、性能、可维护性以及未来的扩展性。本节…

个性化光标和动态壁纸

光标 进入这个宝藏网页至美化 至美化 进入鼠标页面&#xff0c;选择自己喜欢的鼠标&#xff0c;进入相关页面 分为两种&#xff0c;那么热爱有钱的UU可以选择高清版 像我这种没钱的孩子或者觉得试用版够用的就使用上面的 点击下载 进入自己的文件夹&#xff0c;解压成功之…

深度学习11-13

1.神经元的个数对结果的影响&#xff1a; &#xff08;http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html&#xff09; &#xff08;1&#xff09;神经元3个的时候 &#xff08;2&#xff09;神经元是10个的时候 神经元个数越多&#xff0c;可能会产生…

英伟达下一代DLSS或利用人工智能

英伟达的黄仁勋在2024年Computex展会上的问答环节中&#xff0c;提前透露了公司未来几代深度学习超采样&#xff08;DLSS&#xff09;技术的发展方向。在回答有关DLSS的问题时&#xff0c;黄仁勋表示&#xff0c;未来我们将看到通过纯粹的人工智能生成的纹理和对象。他还提到&a…

【React】Axios请求头注入token

业务背景: Token作为用户的数据标识&#xff0c;在接口层面起到了接口权限控制的作用&#xff0c;也就是说后端有很多接口都需要通过查看当前请求头信息中是否含有token数据&#xff0c;来决定是否正常返回数据 // 添加请求拦截器 request.interceptors.request.use(config …

基于CDMA的多用户水下无线光通信(3)——解相关多用户检测

继续上一篇博文&#xff0c;本文将介绍基于解相关的多用户检测算法。解相关检测器的优点是因不需要估计各个用户的接收信号幅值而具有抗远近效应的能力。常规的解相关检测器有运算量大和实时性差的缺点&#xff0c;本文针对异步CDMA的MAI主要来自干扰用户的相邻三个比特周期的特…

语音识别相关文章整理目录

一、语音大模型架设与功能实现 使用sherpa-ncnn进行中文语音识别&#xff08;ubuntu22&#xff09;-CSDN博客文章浏览阅读953次&#xff0c;点赞30次&#xff0c;收藏26次。请注意&#xff0c;需要首先安装安装了所有必要的依赖项&#xff0c;包括 CMake、Git 和一个合适的 C/…

Java启动jar设置内存分配详解

在微服务架构越来越盛行的情况下&#xff0c;我们通常一个系统都会拆成很多个小的服务&#xff0c;但是最终部署的时候又因为没有那么多服务器只能把多个服务部署在同一台服务器上&#xff0c;这个时候问题就来了&#xff0c;服务器内存不够&#xff0c;这个时候我们就需要对每…

UsersGUI.java用户界面

完成效果图&#xff1a; 点击阅读按钮&#xff1a; 点击删除按钮&#xff1a; 点击新建按钮&#xff1a; Code /* This GUI application allows users to manage their diaries: ​ Read: Users can read existing diaries. Create: Users can create new diaries. Delete: Us…

任务5.2 掌握DStream基础操作

实战&#xff1a;DStream基础操作 了解DStream编程模型&#xff1a;DStream是Spark Streaming中对实时数据流的抽象&#xff0c;可以看作一系列持续的RDD。DStream可以通过外部数据源获取或通过现有DStream的高级操作获得。 操作本质&#xff1a;DStream上的操作最终会转化为对…

(4) cmake编译静态库和动态库

文章目录 静态库整体代码动态库编译整体代码执行结果(静态) 静态库整体代码 static.h #pragma onecevoid static_demo();static.cpp #include "static.h" #include <iostream>void static_demo(){std::cout<<"static demo"<<std::end…

[数据集][目标检测]药片药丸检测数据集VOC+YOLO格式152张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;152 标注数量(xml文件个数)&#xff1a;152 标注数量(txt文件个数)&#xff1a;152 标注类别…

CTFHUB-SSRF-端口扫描

已经提示我们需要扫描8000~9000的端口 ?urlhttp://127.0.0.1:8000/flag.php 访问用burp抓包爆破 通过Burp扫描8000-9000端口开放的web服务&#xff0c;发现8718开放web服务

SpringBoot+ENC实现密钥加密及使用原理

&#x1f60a; 作者&#xff1a; 一恍过去 &#x1f496; 主页&#xff1a; https://blog.csdn.net/zhuocailing3390 &#x1f38a; 社区&#xff1a; Java技术栈交流 &#x1f389; 主题&#xff1a; SpringBootENC实现密钥加密及使用原理 ⏱️ 创作时间&#xff1a; 202…

运算放大器(运放)低通滤波反相放大器电路和积分器电路

低通滤波反相放大器电路 运放积分器电路请访问下行链接 运算放大器(运放)积分器电路 设计目标 输入ViMin输入ViMax输出VoMin输出VoMaxBW&#xff1a;fp电源Vee电源Vcc–0.1V0.1V–2V2V2kHz–2.5V2.5V 设计说明 这款可调式低通反相放大器电路可将信号电平放大 26dB 或 20V/…

支持 MKV、MP4、AVI、MPG 等格式视频转码器

一、简介 1、一款开源的视频转码器&#xff0c;适用于 Linux、Mac 和 Windows。它是一个免费的工具&#xff0c;由志愿者们开发&#xff0c;可以将几乎所有格式的视频转换为现代、广泛支持的编码格式。你可以在官网上下载该应用或源代码。该软件支持 MKV、MP4、AVI、MPG 等格式…

如何看待鸿蒙HarmonyOS?

鸿蒙系统&#xff0c;自2019年8月9日诞生就一直处于舆论风口浪尖上的系统&#xff0c;从最开始的“套壳”OpenHarmony安卓的说法&#xff0c;到去年的不再兼容安卓的NEXT版本的技术预览版发布&#xff0c;对于鸿蒙到底是什么&#xff0c;以及鸿蒙的应用开发的讨论从来没停止过。…