蓝桥杯备赛(基础语法4)

·冒泡排序

冒泡排序的思想

冒泡排序的思想是每次将最大的一下一下运到最右边,然后将最右边这个确定下来。再来确定第二大的,再确定第三大的...
对于数组 a [ ] ,具体的来说,每次确定操作就是从左往右扫描,如果 a [ i ] > a [ i + 1] ,我们就执行swap ( a [ i ] , a [ i + 1 ] ) 将两项交换,然后再往右检查,这样可以找出最大的并将其丢到最右边。

第一次确定操作是将a [ 1 ] ~ a [ n ] 中最大的放到 a [ n ] ;

第二次确定操作是将 a [ 1 ] ~ a [ n - 1 ] 中最大的放到 a [ n - 1 ] 。
依此类推(类似地,如果你想先把最小的放到左边也是可以的),时间复杂度为 O ( n ^ 2 )

由于排序过程中,数字像冒泡泡一样从左往右换过去,故名冒泡排序。

冒泡排序的实现

冒泡排序一般用双重循环来实现。在这里i表示每次操作的右边界,也是存放当前操作最大值的位置。虽然j的范围是到 i - 1 ,实际上 j + 1 会到 i ,所以可以使得操作是正确的。

例题讲解

用冒泡排序解决:

·选择排序

选择排序的思想

选择排序的思想和冒泡排序类似,是每次找出最大的然后直接放到右边对应位置,然后将最右边这个确定下来(而不是一个一个地交换过去)。再来确定第二大的,再确定第三大的...
对于数组 a [ ] ,具体的来说,每次确定操作(假设当前要确定的是 i 位置)就是从左往右扫描,计算出最大元素的下标 max_id ,最后执行一次 swap ( a [ max_id ] , a [ i] ) 将两项交换即可。第一次确定操作是将a [ 1 ] ~ a [ n ] 中最大的放到 a [ n ] ;
第二次确定操作是将 a [1] ~ a [ n - 1 ] 中最大的放到 a [ n - 1 ] 。
依此类推(类似地,如果你想先把最小的放到左边也是可以的),时间复杂度为O(n^2)。

选择排序的实现

选择排序一般用双重循环来实现。max_id 表示最大元素的下标。这里要注意的细节是 j 的范围是[1,i ] ,而在冒泡排序中j的范围是 [ 1,i - 1 ]。

例题讲解

用选择排序解决:

·插入排序

插入排序的思想

插入排序是一种简单直观的排序算法,其基本思想是将待排序的元素逐个插入到已排序序列的合适位置中,使得已排序序列逐渐扩大,从而逐步构建有序序列,最终得到完全有序的序列。
它类似于我们打扑克牌时的排序方式,将一张张牌插入到已经有序的手牌中。时间复杂度为O(n^2)。

插入排序的实现

插入排序一般用双重循环来实现。初始时我们认为长度为1的数组a [ 1 ] 是有序的(显然),然后将 a [ 2 ] 插入到合适的位置,使得 a [ 1 ~ 2 ] 有序,然后将 a [ 3 ] 插入,使得 a [ 1 ~ 3 ] 有序...直至a[1~n]有序。

例题讲解

用选择排序解决:

·快速排序

快速排序而的思想

快速排序是一种基于分治法的排序方法,原理是将一个数组分成两个子数组,其中一个子数组的所有元素都小于另一个子数组的元素,然后递归地对这两个子数组进行排序。
快速排序的思想是通过不断地将数组分成两个子数组,递归地对子数组进行排序,最终得到
一个有序的数组。这个过程通过选择合适的基准和分区操作来实现。
快速排序拥有更好的时间复杂度O(nlogn),且不需要额外空间。

快速排序的实现

这是快速排序的递归主体 QuickSort()。传入参数为要排序的数组和区间的左右端点。
 Partition函数会将数组 a [ l ] ~ a [ r ] 这个区间中某个基准数字放到正确的位置并将这个位置返回。
在确定了 mid 的位置之后,可以保证 a [ l ] ~ a [ mid-1]都< a [mid] < a [mid+1] ~ a[r],于是只需要将左右两边分别向下递归地排序即可。

这是Partition函数(分区函数),用于将比pivot小的放到左边,大的放到右边,最后返回pivot所处的位置。


例题讲解

用快速排序解决,前面讲过的几种排序方法的时间复杂度都是O(n^2),所以只能解决规模在1e3左右的问题,快速排序拥有较好的时间复杂度O(nlogn),所以可以解决更大规模的问题(约1e5)。

代码如下:

·归并排序

归并排序的思想

归并排序和快速排序类似,也是一种基于分治法的排序方法。
原理是将一个数组分成两个子数组,将子数组向下递归的排序后(当数组中仅有一个元素值无需再排序了,直接返回),得到两个有序数组,然后进行O(n)的合并,最终合并成有序的原数组。
快速排序拥有较好的时间复杂度O(nlogn),但需要额外的空间用于合并数组。

归并排序的实现

这是归并排序的递归主体MergeSort()。传入参数为要排序的数组和区间的左右端点。
递归出口:当区间大小为1时,直接返回即可。
在确定了mid的位置之后,可以保证 a [ l ] ~ a [ mid ] 和 a [ mid + 1 ] ~ a [ r ] 都是有序的,于是只需要扫一遍将两个有序数组合并即可。
合并过程需要分类考虑一下,其中 pl 表示左半边的下标,pr 表示右半边的下标,pb 表示临时存放的数组的下标。

合并完成后要将b复制回a。

例题讲解

用归并排序解决:

代码如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/35988.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法】力扣 713题:乘积小于 K 的子数组之深入思考

文章目录 前言题目&#xff1a;乘积小于 K 的子数组参考思路方法一&#xff1a;滑动窗口方法二&#xff1a;二分查找 参考题解方法一&#xff1a;滑动窗口解法方法二&#xff1a;二分查找解法 深入思考浮点精度&#xff1f;right - left 1&#xff1f;二分法&#xff1f;哈希优…

超声重建,3D重建 超声三维重建,三维可视化平台 UR 3D Reconstruction

1. 超声波3D重建技术的实现方法与算法 技术概述 3D超声重建是一种基于2D超声图像生成3D体积数据的技术&#xff0c;广泛应用于医学影像领域。通过重建和可视化三维结构&#xff0c;3D超声能够显著提高诊断精度和效率&#xff0c;同时减少医生的脑力负担。本技术文档将详细阐述…

Docker 部署 Graylog 日志管理系统

Docker 部署 Graylog 日志管理系统 前言一、准备工作二、Docker Compose 配置三、启动 Graylog 服务四、访问 Graylog Web 界面总结 前言 Graylog 是一个开源的日志管理平台&#xff0c;专为实时日志收集、分析和可视化设计。它支持强大的搜索功能&#xff0c;并且与 Elastics…

【图论】并查集的学习和使用

目录 并查集是什么&#xff1f; 举个例子 组成 父亲数组&#xff1a; find函数&#xff1a; union函数&#xff1a; 代码实现&#xff1a; fa[] 初始化code: find code&#xff1a; 递归实现: 非递归实现: union code : 画图模拟&#xff1a; 路径压缩&#xff1a…

FPGA-流水灯

Quartus中使用Verilog实现 根据之前所学内容&#xff0c;打开Quartus 软件&#xff0c;新建FPGA项目文件&#xff0c;建立好空项目过后&#xff0c;选择Verilog HDL File&#xff0c;因为我们要使用Verilog代码实现仿真。 详细操作可参考往期博客&#xff1a; FPGA 实验报告&a…

React19源码系列之createRoot的执行流程是怎么的?

2024年12月5日&#xff0c;react发布了react19版本。后面一段时间都将学习它的源码&#xff0c;并着手记录。 react官网&#xff1a;react19新特性 https://react.dev/blog/2024/12/05/react-19 在用vite创建react项目的使用&#xff0c;main.tsx主文件都会有以下代码。 //i…

全网首创/纯Qt/C++实现国标GB28181服务/实时视频/云台控制/预置位/录像回放和下载/事件订阅/语音对讲

一、前言说明 用纯Qt来实现这个GB28181的想法很久了&#xff0c;具体可以追溯到2014年&#xff0c;一晃十年都过去了&#xff0c;总算是整体的框架和逻辑都打通了&#xff0c;总归还是杂七杂八的事情多&#xff0c;无法静下心来研究具体的协议&#xff0c;最开始初步了解协议后…

Qt 实操记录:打造自己的“ QQ 音乐播放器”

目录 一.界面设计1.成品界面分析2.head界面实现3.body界面实现4.主界面设置(1).设置无标题栏与阴影效果(2).重写鼠标事件实现拖拽 二.自定义控件1.BtFrom界面设计2.推荐页面设计3.recBox页面设计4.recBoxItem页面设计(1).eventFilter介绍和使用(2).QJsonObject介绍和使用(3).向…

如何打造安全稳定的亚马逊采购测评自养号下单系统?

在当今的电商领域&#xff0c;亚马逊作为全球领先的在线购物平台&#xff0c;其商品种类繁多&#xff0c;用户基数庞大&#xff0c;成为了众多商家和消费者的首选。而对于一些需要进行商品测评或市场调研的用户来说&#xff0c;拥有一个稳定、安全的亚马逊账号体系显得尤为重要…

Python文字识别OCR

一.引言 文字识别&#xff0c;也称为光学字符识别&#xff08;Optical Character Recognition, OCR&#xff09;&#xff0c;是一种将不同形式的文档&#xff08;如扫描的纸质文档、PDF文件或数字相机拍摄的图片&#xff09;中的文字转换成可编辑和可搜索的数据的技术。随着技…

如何在 Github 上获得 1000 star?

作为程序员&#xff0c;Github 是第一个绕不开的网站。我们每天都在上面享受着开源带来的便利&#xff0c;我相信很多同学也想自己做一个开源项目&#xff0c;从而获得大家的关注。然而&#xff0c;理想很丰满&#xff0c;现实却是开发了很久的项目仍然无人问津。 最近&#x…

汽车机械钥匙升级一键启动的优点

汽车机械钥匙升级一键启动的优点主要包括&#xff1a; 便捷性&#xff1a;一键启动功能的引入极大地提升了用车便捷性。车主无需翻找钥匙&#xff0c;只需在车辆感应范围内轻触启动键&#xff0c;即可轻松发动汽车。 安全性&#xff1a;移动管家专车专用一键启动系统配备了防…

[QT]深入理解Qt中的信号与槽机制

文章目录 信号与槽1. 信号和槽概述信号的本质槽的本质说明 2. 信号和槽的使用2.1 连接信号和槽2.2 查看内置信号和槽2.3 通过 Qt Creator 生成信号槽代码 3. 自定义信号和槽3.1 基本语法3.2 带参数的信号和槽**示例1&#xff1a;重载信号槽****示例2&#xff1a;信号槽参数列表…

Axure设计之下拉多选框制作教程C(中继器)

利用Axure制作下拉多选器组件可以极大地提升原型制作的效率和效果。以下是基于你提供的详细步骤的详细指导&#xff0c;帮助你在Axure中实现一个功能完善、高保真且可复用的下拉多选器组件。 一、案例预览 预览地址&#xff1a;https://pghy0i.axshare.com 实现效果包括&#…

STC89C52单片机学习——第25节: [11-1]蜂鸣器

写这个文章是用来学习的,记录一下我的学习过程。希望我能一直坚持下去,我只是一个小白,只是想好好学习,我知道这会很难&#xff0c;但我还是想去做&#xff01; 本文写于&#xff1a;2025.03.18 51单片机学习——第25节: [11-1]蜂鸣器 前言开发板说明引用解答和科普一、蜂鸣器…

Linux上的`i2c-tools`工具集的详细介绍;并利用它操作IMX6ULL的I2C控制器进而控制芯片AP3216C读取光照值和距离值

IC-Tools 工具集介绍 i2c-tools 是 Linux 下用于 IC 设备调试 的用户空间工具集(你也可以把它看成是一个库&#xff0c;类似于之前自己用过的触摸屏库tslib库、FreeType矢量字符库)&#xff0c;它提供了一系列命令行工具&#xff0c;可以扫描、读取、写入 IC 设备&#xff0c;…

《CircleCI:CircleCI:解锁软件开发持续集成(CI)和持续部署(CD)高效密码》:此文为AI自动生成

《CircleCI&#xff1a;CircleCI&#xff1a;解锁软件开发持续集成&#xff08;CI&#xff09;和持续部署&#xff08;CD&#xff09;高效密码》&#xff1a;此文为AI自动生成 一、CircleCI 初印象 在当今软件开发的快节奏赛道上&#xff0c;持续集成&#xff08;CI&#xff0…

LinuX---Shell脚本创建和执行

概述&#xff1a; 它是一个命令行解释器&#xff0c;接收应用程序/用户命令&#xff0c;然后调用操作系统内核。 Shell还是一个功能强大的编程语言&#xff0c;易编写、易调试、灵活性强。 Linux提供的Shell解析器有 atguiguubuntu:~$ cat /etc/shells # /etc/shells: valid …

再学:Solidity数据类型

目录 1.uint&#xff1a;无符号整型 2.引用类型 3.数组 4.注意gas的消耗 ​编辑 5.映射 1.uint&#xff1a;无符号整型 注意能容纳的最大值和最小值 2.引用类型 值类型赋值 相当于 拷贝 若拷贝开销过大&#xff0c;可以考虑引用类型。 memory&#xff1a;只存在于函数内部…

Docker Desktop配置国内镜像源教程

在使用 Docker 时&#xff0c;由于默认镜像源在国外&#xff0c;经常会遇到下载速度慢、连接超时等问题。本文将详细介绍如何在 Windows 系统中为 Docker 配置国内镜像源&#xff0c;以提升镜像拉取速度。 常用国内镜像源 https://docker.1ms.run清华镜像源 https://docker.m…