【Apache Doris】如何实现高并发点查?(原理+实践全析)

【Apache Doris】如何实现高并发点查?(原理+实践全析)

  • 一、背景说明
  • 二、原理介绍
  • 三、环境信息
  • 四、Jmeter初始化
  • 五、参数预调
  • 六、用例准备
  • 七、高并发实测
  • 八、影响因素
  • 九、总结

本文主要分享 Apache Doris 是如何实现高并发点查的,以及如何实测单节点上万QPS。

一、背景说明

Apache Doris 是一款基于 MPP 架构的高性能、实时的分析型数据库。它可以在多个节点上并行处理查询,显著提高查询效率,且默认以列存格式引擎构建。这种格式非常适合进行数据分析,因为它可以有效地压缩数据,并且在执行查询时只需要读取相关的列。但有些高并发服务场景中,用户需要频繁获取整行数据,如果表较宽时,列存的IO也随之被放大。

Apache Doris 中 FE 是 SQL 查询的访问层服务,使用 Java 编写,分析和解析 SQL 也会导致高并发查询的高 CPU 开销,且其查询引擎和计划对于某些简单的查询(例如点查询)而言太重了。

那么,Apache Doris 是如何实现高并发查询以及如何实现高并发点查的呢?

二、原理介绍

Apache Doris 能够实现高并发查询的能力主要是通过以下几个方面:

  1. MPP架构

基于大规模并行处理(Massively Parallel Processing, MPP)架构设计,它可以将查询分解为多个任务,在多个节点上并行执行这些任务,使得系统可以通过增加更多的计算资源来线性扩展其查询处理能力。

  1. 列式存储

使用列式存储格式,这意味着对于任何给定的查询,它只需要读取涉及到的列,而不是整行数据。这减少了磁盘I/O压力,因为只有必需的数据被加载到内存中。

  1. 数据分片

分区和分桶裁剪在 Apache Doris 中也是实现高并发查询的重要机制。这两种技术可以帮助更有效地组织数据,提高查询效率,尤其是在面对大规模数据集时。

  1. 向量化查询执行

Apache Doris 实现了向量化查询处理,这意味着在执行操作时,它可以一次处理数据列的一整块,而不是逐行处理。这样可以大大提高CPU的利用率,降低每个数据点的处理开销。

  1. 索引和物化视图

Apache Doris 支持创建索引和物化视图来加速查询,减少扫描行数和避免了大量的现场计算,例如倒排、ZoneMap、Bloom Filter和Bitmap 等索引和预计算物化。

  1. 统计信息和成本基准优化

Apache Doris 会收集表和列的统计信息,并使用这些信息来优化查询计划,选择最佳的执行路径。

… 此处省略上万字

基于【背景说明】和上述内容,Apache Doris 可实现单节点上千 QPS 的并发支持。但在一些超高并发要求(例如上万 QPS)的 Data Serving 场景中,仍然存在瓶颈。

因此,Apache Doris 引入了如下几个2.0新特性 从降低 SQL 内存 IO 开销、提升点查执行效率以及降低 SQL 解析开销这三个设计点出发,进行一系列优化:

  1. 行式存储格式(Row Store Format)

Apache Doris 支持用户在建表时,通过 store_row_column 表属性另存一份行数据(列存+行存)。在单次检索整行数据时效率更高,减少磁盘访问次数 。

  1. 行存缓存(Row Cache)

Apache Doris 有针对列数据的Page Cache。但如果一行包括多列数据,这类缓存可能会被大查询给刷掉,为了增加缓存命中率、提升点查询的性能,Apache Doris 引入了行存缓存(Row Cache)。

  1. 点查询短路径优化(Short-Circuit)

通常而言,一个查询会在 FE 端进行SQL语句解析、生成执行计划后下发到 BE 进行计算获取结果。但对于高并发点查场景,则不适合这个长流程。

因此,Apache Doris 实现了点查询的短路径优化。当FE接收到此类查询时,会在规划器中生成轻量级的 Short-Circuit Plan,避免生成复杂的 Fragment Plan 并消除了在 MPP 查询框架下执行调度的性能开销。

  1. 预处理语句优化(Prepared Statement)

高并发查询中的 CPU 开销可以部分归因于 FE 层分析和解析 SQL 的 CPU 计算,为了解决这个问题,Apache Doris 在 FE 端提供了与 MySQL 协议完全兼容的预处理语句(Prepared Statement)。

通过在 Session 内存 HashMap 中缓存预先计算好的 SQL 和表达式,在后续查询时直接复用缓存对象,避免这些结构在序列化和反序列化时造成CPU热点。

基于以上一系列优化,帮助 Apache Doris 在 Data Serving 场景的性能得到进一步提升。下面就来实测一把吧。

三、环境信息

  1. 硬件信息
  • 内存:32G
  • CPU:16C
  • CPU架构:X86_64
  • 硬盘:SSD单盘
  • 节点数:1
  1. 软件信息
  • Doris版本:2.0.3
  • Manager版本:23.10.3
  • Jmeter版本:5.6
  • JDK版本:1.8
  • Mysql Driver版本:8.0
  • 系统:CentOS

四、Jmeter初始化

本文基于Jmeter进行高并发实测。

  1. 安装部署

非GUI使用模式。

# 官方下载包 
wget https://dlcdn.apache.org/jmeter/binaries/apache-jmeter-5.6.tgz # 解压包 tar -zvf apache-jmeter-5.6.tgz 
# 解压后目录结构和本地UI模式一

上传mysql-connector包到lib目录下。

  1. 参数说明

命令模版和参数说明,详情可阅:

https://jmeter.apache.org/usermanual/get-started.html#non_gui

jmeter -n -t <脚本文件名>.jmx -l <本不存在的结果文件名>.jtl -e -o <存放html报告的空目录> -h 帮助 
-n 非GUI模式 
-t 测试脚本.jmx的路径和文件名称 
-l 测试结果存放的路径和文件名称 (要确保之前没有运行过,即xxx.jtl不存在,不然报错),会自动创建 
-r 启动jmeter.properties文件中指定的所有远程服务器 
-e 在脚本运行结束后生成html报告 
-o 用于存放html报告的目录(目录要为空,不然报错),会自动创建

五、参数预调

  1. fe.conf
-- 每个 FE 的最大连接数,默认值:1024
qe_max_connection=10240 
  1. be.conf

为了增加行缓存命中率,Doris单独引入了行存缓存;行缓存复用了 Doris 中的 LRU Cache 机制来保障内存的使用。

-- 是否开启行缓存, 默认不开启
disable_storage_row_cache=false 
-- 指定 Row cache 占用内存的百分比, 默认 20% 内存
row_cache_mem_limit=40% 
  1. 表属性

建表时调整即可。

-- 必须为Unique Key表 
-- 开启行存
"store_row_column" = "true" 
-- 开启mow模式
"enable_unique_key_merge_on_write" = "true" 
-- 开启light 
schema change: "light_schema_change" = "true" 
  1. 会话参数
-- 查看新优化器是否开启
show variables like '%enable_nereids_planner%'; -- 非必选,jdbc链接配置 useServerPrepStmts=true时,会自动走短路径优化、即不走旧优化器 
-- 如:jdbc:mysql://127.0.0.1:9030/ycsb?useServerPrepStmts=true 
set global experimental_enable_nereids_planner=false;
  1. 用户参数
-- 查看用户连接数
SHOW PROPERTY FOR 'root' LIKE '%max_user_connections%';
-- 设置连接数
SET PROPERTY FOR 'root' 'max_user_connections' = '10000';

六、用例准备

  1. 测试表创建

基于Star Schema Benchmark的part零件信息表调整创建,共9个字段、2个联合Key。

CREATE TABLE `row_part` (
`p_partkey` int(11) NULL,
`p_name` varchar(69) NULL,
`p_mfgr` varchar(21) NULL,
`p_category` varchar(24) NULL,
`p_brand` varchar(30) NULL,
`p_color` varchar(36) NULL,
`p_type` varchar(78) NULL,
`p_size` int(11) NULL,
`p_container` varchar(33) NULL
) ENGINE=OLAP
Unique KEY(`p_partkey`, `p_name`)
COMMENT 'OLAP'
DISTRIBUTED BY HASH(`p_partkey`, `p_name`) BUCKETS 10
PROPERTIES (
"replication_allocation" = "tag.location.default: 1",
"light_schema_change" = "true",
"store_row_column" = "true" ,
"enable_unique_key_merge_on_write" = "true" 
);
  1. 测试表数据生成

测试表最终为3200万数据。

-- 源表为明细模型,目标表为开启了行存、mow和light_schema_change的unique模式表
-- 通过对字段+数字等方式去重快速造数
insert into row_part -- 目标测试表
select 
`p_partkey`+1, 
concat(`p_name`, '1'), 
`p_mfgr` ,
`p_category`,
`p_brand`,
`p_color`,
`p_type`L,
`p_size`,
`p_container`
from part; -- 源表
  1. 测试SQL

测试SQL如下。

select * from ssb_test.row_part
where p_partkey = ? and p_name = ?

确认是否符合高并发点查条件,即该SQL是否走短路径(当前版本需要where带上所有key才可触发)。

-- 本地client查验需要先关闭新优化器
set experimental_enable_nereids_planner=false;--  ScanNode中是否有SHORT-CIRCUIT标识
explain 
select * from ssb_test.row_part
where p_partkey = 5 and p_name = 'blush chiffon';

如下图所示,ScanNode中有SHORT-CIRCUIT标识,符合高并发点查条件。

  1. prepare参数生成

获取prepare的csv参数数据。

-- 
select 
p_partkey,
p_name 
from ssb_test.row_part
limit 3000;

导出查询结果集(通过dbeaver自身的功能导出csv数据作为prepare参数)。

导出后会在相应目录生成对应文件(需要手动去除第一行的字段名)。

上传至jmeter的home目录下。

  1. JMX脚本准备

可以在本地jmeter客户端配置后保存生成.jmx再上传至jmeter的home目录下。

① JDBC连接管理器

jdbc:mysql:loadbalance://fe_ip:9030/db?characterEncoding=utf8&amp;useSSL=false&amp;useServerPrepStmts=true;cachePrepStmts=true&amp;prepStmtCacheSqlLimit=1024

直接影响效率的参数:

  • useServerPrepStmts = true
  • cachePrepStmts = true

② 线程组

主要用于控制压测的循环测试、线程数和压测时间等;本文默认设置的是100线程数压60秒。

③ CSV数据文件设置

需要注意文件名、即对应 [prepare参数生成] 的csv文件存放路径, 以及csv列对应的字段名称和分隔符的填写。

④ SQL测试脚本

选择Prepare模式随机传参,其中[Parameter values]和[Parameter types]需要和SQL中的[?]缺省值完全对齐。

七、高并发实测

Jmeter执行脚本(简易模式)。

./bin/jmeter -n -t row_part.jmx

最终随机压测结果的平均QPS为6W+/S。

压测过程中,BE的CPU大致使用50%(其中包括Jmeter进程的),内存使用率较低。

八、影响因素

  1. 常规配置
  • 未按【参数预调】进行调整
  • 未按【JMX脚本准备】进行合理设置
  • 数据分区分桶太大(并行度过高)或太小(并发过小)都会影响效率
  1. jdbc参数

仅去除 jdbc url 中的useServerPrepStmts=true; 参数时降为3W+/S。

仅去除 jdbc url 中的cachePrepStmts=true; 参数时降为2W/S。

  1. 线程数

不宜过高,例如> 1W线程数时,降为2W+/S。

不宜过少,例如5个线程数时,降为1W+/S。

具体线程数设置需要根据【环境信息】进行对比调整。

  1. fe个数

合理范围内,1个fe可提高一定的并发量。如果多加fe、QPS都没有增长,需要定位是否存在其它影响因素。

  1. prepare参数分布

【prepare参数生成】过于集中、可能导致集中查某几台be影响效率,需要足够分散。

  1. 资源瓶颈

如果上述原因都符合预期,且CPU还相对空闲的情况下,QPS依旧无法提升,需要排查网络或IO等资源是否遇到了瓶颈。

  1. 其它

欢迎各位看官补充。

九、总结

Apache Doris 基于MPP架构、列存、分区分桶、向量化引擎、索引视图和基准优化等方面实现了高性能并发查询。在此基础上引入了行存、短查询路径和Prepared Statement特性实现了高并发点查询,效果俱佳。如果有相关场景的同学,欢迎实测交流。

至此,【Apache Doris】如何实现高并发点查 分享结束,查阅过程中若遇到问题欢迎留言交流。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/360271.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读】-- Attribute-Aware RBFs:使用 RT Core 范围查询交互式可视化时间序列颗粒体积

Attribute-Aware RBFs: Interactive Visualization of Time Series Particle Volumes Using RT Core Range Queries 摘要1 引言2 相关工作2.1 粒子体渲染2.2 RT核心方法 3 渲染彩色时间序列粒子体积3.1 场重构3.1.1 密度场 Φ3.1.2 属性字段 θ3.1.3 优化场重建 3.2 树结构构建…

Pinia详解

文章目录 简介特点用法1. 安装Pinia2. 注册Pinia Store3. 创建Pinia Store4. 使用Pinia Store 区别 Vuex详解 Pinia是一个基于Vue 3的状态管理库&#xff0c;专为Vue 3设计。它提供了一种简单、直观且可扩展的方式来组织和访问应用程序的状态。Pinia的设计灵感来源于Vuex&#…

199.罗马数字转整数(力扣)

代码解决 class Solution { public:// 定义一个哈希表来存储罗马数字符号及其对应的整数值unordered_map<char, int> res {{I, 1},{V, 5},{X, 10},{L, 50},{C, 100},{D, 500},{M, 1000},};// 将罗马数字字符串转换为整数的函数int romanToInt(string s) {int num 0; …

keepalive+nginx高可用架构

目录 一.keepalive简要介绍 1.keepalive相关文件 2.keepalive配置组成 3.keepalive全局配置 4.配置虚拟路由器 5.抢占模式和非抢占模式 抢占模式&#xff08;Preemptive Mode&#xff09; 使用方法&#xff1a; 非抢占模式&#xff08;Non-preemptive Mode&#xff09;…

vue3-openlayers 轨迹回放(历史轨迹)(ol-animation-path实现)

本篇介绍一下使用vue3-openlayers轨迹回放&#xff08;历史轨迹&#xff09;&#xff08;ol-animation-path实现&#xff09; 1 需求 轨迹回放&#xff08;历史轨迹&#xff09;实时轨迹 2 分析 轨迹回放&#xff08;历史轨迹&#xff09;&#xff0c;一般是一次性拿到所有…

LabVIEW在核磁共振实验室的应用

​核磁共振&#xff08;NMR&#xff09;实验室在进行复杂的核磁共振实验时&#xff0c;需要一个高效、灵活且易于操作的实验控制和数据采集系统。传统的NMR实验系统往往使用专门的硬件和软件&#xff0c;存在系统封闭、扩展性差、维护成本高等问题。为了解决这些问题&#xff0…

fastadmin框架修改前端时间戳格式的时区

一、上传文件 将 moment-timezone-with-data.js 和 moment-timezone-with-data.min.js 文件上传到项目的 \public\assets\libs\moment\ 文件夹中。 二、配置中引入文件 在 \public\assets\js\require-backend.js 文件中增加所引入文件的配置: moment-timezone-with-data: …

计算机方向国际学术会议推荐

*华中师范大学伍伦贡联合研究院与南京大学联合主办 第三届人工智能、物联网和云计算技术国际会议&#xff08;AIoTC 2024&#xff09; 大会官网&#xff1a;www.icaiotc.net 时间地点&#xff1a;2024年9月13-15日&#xff0c;中国武汉 收录检索&#xff1a;EI Compendex&a…

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测

分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测 目录 分类预测 | Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现GA-XGBoost遗传算法优化XGBoost的多特征分类预测&#xff0c;…

发动机燃烧仿真|CMCL填补CFD与0维/1维均质反应模型方法间的空白

发动机的研制涉及空气动力、燃烧传热、自动控制等多方面的问题。相比基于物理样机试验的传统涉及方法&#xff0c;数值模拟仿真设计方法大大地节约了研发成本、缩短了研发周期。 对于发动机一维概念设计&#xff0c;CMCL燃烧仿真解决方案可以帮助用户快速准确实现点火、熄火、…

什么是AI绘画?全网最细stable diffusion工作原理讲解!

前言 &#xff08;这篇文章是给那些打算接触AI绘画和还不太了解的人写的&#xff09;什么是AI绘画&#xff1f;什么配置才能AI绘画&#xff1f;要怎样部署文件、输入咒语&#xff1f;你是否有着这样的疑问&#xff0c;在这个系列我会写一下我近一个多月的学习成果&#xff0c;…

hypernetwork在SD中是怎么工作的

大家在stable diffusion webUI中可能看到过hypernetwork这个词&#xff0c;那么hypernetwork到底是做什么用的呢&#xff1f; 简单点说&#xff0c;hypernetwork模型是用于修改样式的小型神经网络。 什么是 Stable Diffusion 中的hypernetwork&#xff1f; Hypernetwork 是由…

JavaWeb系列十二: 服务器端渲染技术(JSP) 上

跟着韩老师学java 1. JSP基本介绍1.1 JSP快速入门1.2 JSP(Java Server Pages)运行原理1.3 page指令介绍1.4 JSP脚本1.4.1 声明脚本1.4.2 表达式脚本1.4.3 java代码脚本 1.5 jsp注释1.6 jsp内置对象1.7 JSP四大域对象1.7.1 域对象实例1.7.2 注意事项 1.8 JSP请求转发标签1.9 作业…

MYSQL 将某个字段赋值当前时间

如 我们需要将use_time 赋值为当前时间&#xff1a; 准备三条数据 &#xff1a; 执行sql &#xff0c;2种当前时间赋值函数&#xff0c;1种关键字赋值 &#xff1a; update test_info SET use_timeNOW() WHERE id 1; update test_info SET use_timeCURRENT_TIMESTAMP() …

基于飞腾腾云S2500的ATS部署及调优指南(反向代理篇)

【写在前面】 飞腾开发者平台是基于飞腾自身强大的技术基础和开放能力&#xff0c;聚合行业内优秀资源而打造的。该平台覆盖了操作系统、算法、数据库、安全、平台工具、虚拟化、存储、网络、固件等多个前沿技术领域&#xff0c;包含了应用使能套件、软件仓库、软件支持、软件适…

场外期权一级交易商都有哪些?和二级交易商有什么区别?

今天带你了解场外期权一级交易商都有哪些&#xff1f;和二级交易商有什么区别&#xff1f;目前&#xff0c;个人投资者无法直接进行场外个股期权投资&#xff0c;而是需要通过专业机构进行询价交易下单。 场外期权业务一级交易商分别为&#xff0c;广发证券、国泰君安、华泰证…

Java学习笔记(一)Java内容介绍、程序举例、DOS命令、Java跨平台特性的本质、课后练习

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍Java内容介绍、程序举例、DOS命令、Java跨平台特性的本质还有几道课后练习详细介绍以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问题可以在评论区留言 …

中小学校共用电脑通过安当SLA产品配置实现开机控制

中小学校公用电脑实现电脑开机控制的必要性主要体现在以下几个方面&#xff1a; 1. 增强安全性&#xff1a; 公用电脑由于使用频繁&#xff0c;容易被未经授权的用户访问&#xff0c;可能存在数据泄露或恶意软件植入的风险。通过实现电脑开机控制&#xff0c;学校可以确保只有…

【jdk】jdk11 jdk17 jdk21的新特性

前言&#xff1a;按照博主的个人理解&#xff0c;一般来说 除了jdk8时代 说jdk8的新特性是特指jdk8这一个版本的特性&#xff0c;之后例如jdk11 jdk17新特性 都是泛特性 什么意思呢&#xff1f; 比如jdk11新特性&#xff0c;一般是指jdk9——jdk11 这一个泛版本的所有新特性&am…

加速度传感器采集时无效数据的产生及消除

1.现象 这是振动传感器的原始采样信号&#xff0c;它有一个明显的上升沿&#xff0c;这个上升沿&#xff0c;看时间轴标尺&#xff0c;大概持续了至少50ms&#xff0c;它是从哪里来的呢&#xff1f; 加速度传感器一般是由恒流源驱动的。而恒流源的原始电源输入是个经由电源模…