[数据结构】——七种常见排序

文章目录

    • 前言
  • 一.冒泡排序
  • 二.选择排序
  • 三.插入排序
  • 四.希尔排序
  • 五.堆排序
  • 六.快速排序
    • hoare
    • 挖坑法
    • 前后指针
    • 快排递归实现:
    • 快排非递归实现:
  • 七、归并排序
    • 归并递归实现:
    • 归并非递归实现:
  • 八、各个排序的对比图

前言

  • 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小, 递增或递减的排列起来的操作。
  • 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
  • 内部排序:数据元素全部放在内存中的排序。
  • 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序

接下来会涉及到的排序
在这里插入图片描述

这里写了一个测试排序性能的代码,方便我们观察各个排序的好坏

//测试排序的性能
void TestOP()
{srand((unsigned)time(NULL));//N的数值手动改变,以判断性能的好坏const int N = 100000;int* a1 = (int*)malloc(sizeof(int) * N);int* a2 = (int*)malloc(sizeof(int) * N);int* a3 = (int*)malloc(sizeof(int) * N);int* a4 = (int*)malloc(sizeof(int) * N);int* a5 = (int*)malloc(sizeof(int) * N);int* a6 = (int*)malloc(sizeof(int) * N);int* a7 = (int*)malloc(sizeof(int) * N);for (int i = 0; i < N; ++i){a1[i] = rand() + i;a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];}int begin1 = clock();InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();int begin3 = clock();SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a4, N);int end4 = clock();int begin5 = clock();QuickSort(a5, 0, N - 1);int end5 = clock();int begin6 = clock();MergeSort(a6, N);int end6 = clock();int begin7 = clock();BubbleSort(a7, N);int end7 = clock();printf("InsertSort:%d\n", end1 - begin1);printf("ShellSort:%d\n", end2 - begin2);printf("SelectSort:%d\n", end3 - begin3);printf("HeapSort:%d\n", end4 - begin4);printf("QuickSort:%d\n", end5 - begin5);printf("MergeSort:%d\n", end6 - begin6);printf("BubbleSort:%d\n", end7 - begin7);free(a1);free(a2);free(a3);free(a4);free(a5);free(a6);free(a7);
}

还有交换函数

//交换函数
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}


以下排序默认是升序,即从小到大的顺序

一.冒泡排序

冒泡的时间复杂度是O(N^2),空间复杂度是O(1),具有稳定性

在这里插入图片描述

从图中我们可以看出,冒泡排序其实就是一种选择排序,即走一次,找到最大的数放在最右边,接下来要排序的数据就少了一个,再走一次,找到此时最大的数放在此时的最右边,接下来不断重复此步骤,数据就有序了

//冒泡排序
void BubbleSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int flag = 0;for (int j = 0; j < n - 1 - i; j++){if (a[j] > a[j + 1]){Swap(&a[j], &a[j + 1]);flag = 1;}}if (flag == 0){return;}}
}

虽然我们使用了flag进行了优化,使冒泡排序在最好的情况下的时间复杂度位O(N),但是实际上冒泡排序只有教学意义,没有实践意义,效率非常低
在十万个数据下面,冒泡走了5s,而在一百万数据下面,走了接近1min了,可见效率是如此的低下

在这里插入图片描述
在这里插入图片描述

二.选择排序

选择排序的时间复杂度是O(N^2),空间复杂度是O(1),具有不稳定性

在这里插入图片描述

从图中我们可以清楚的看到,选择排序每走一次,找到最大或者最小的数据放在最右边或者最左边,然后减少排序的个数,以此类推完成排序

这个排序方法可以优化一下,即走一次找到最小的同时找到最大的

//选择排序
void SelectSort(int* a, int n)
{int begin = 0;int end = n - 1;while (begin < end){int mini = begin;int maxi = begin;for (int i = begin + 1; i <= end; i++){if (a[i] < a[mini]){mini = i;}if (a[i] > a[maxi]){maxi = i;}}Swap(&a[begin], &a[mini]);if (maxi == begin){maxi = mini;}Swap(&a[end], &a[maxi]);begin++;end--;}
}

选择排序即没有实际意义,也没有教学意义,效率低下
在十万个数据下面,选择走了8s,而在一百万数据下面,走了接近15min了,效率不行

在这里插入图片描述
在这里插入图片描述

三.插入排序

插入排序的时间复杂度是O(N^2),空间复杂度是O(1),具有稳定性
在这里插入图片描述

插入排序的思路就是假设在[0,end]是有序的数据,在end+1的位置上插入一个新的数据,用tmp保存插入的数据。
如果end位置上的值大于tmp,end就减1,比较此时end位置上的值与tmp的大小
如果end位置上的值小于tmp,退出循环,将tmp赋给end + 1 位置上的值

//插入排序
void InsertSort(int* a, int n)
{for (int i = 0; i < n - 1; i++){int end = i;//[0,end]是有序的,插入[end+1]数据int tmp = a[end + 1];while (end >= 0){if (a[end] > tmp){a[end + 1] = a[end];end--;}else{break;}}a[end + 1] = tmp;}
}

虽然插入排序的时间复杂度是O(N^2),但是它具有实践意义

在十万个数据下面,走了1s,在一百万数据下面,走了16s了,可见效率是还可以

在这里插入图片描述

在这里插入图片描述

四.希尔排序

希尔排序的时间复杂度是O(N^1.3),空间复杂度是O(1),不具有稳定性

在这里插入图片描述

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。

希尔排序的思想:

  1. 预排序:先分gap,在各自的组内进行插入排序
  2. 插入排序:排好序后,减小gap的值,再次进行预排序,直到gap = 1,进行插入排序,这样数据就有序了

假设gap = 3,将原数据分成3组,那么第一趟预排序的结果为下图
在这里插入图片描述
可以看到在走了一趟后的数据,比原始数据接近有序,这就是希尔排序的优点

//希尔排序
void ShellSort(int* a, int n)
{int gap = n;while (gap > 1){gap = gap / 3 + 1;//多组一起走for (int i = 0; i < n-gap; i++){int end = i;int tmp = a[end + gap];while (end >= 0){if (a[end] > tmp){a[end + gap] = a[end];end -= gap;}else{break;}}a[end + gap] = tmp;}}
}

在十万个数据下面,希尔走了31ms,在一百万数据下面,走了264ms,可见效率还是很快的

在这里插入图片描述
在这里插入图片描述

五.堆排序

堆排序的时间复杂度是O(NlogN),空间复杂度是O(1),不具有稳定性

在这里插入图片描述

堆排序(Heap Sort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的基本思想是:

  1. 将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。
  2. 将其与末尾元素进行交换,此时末尾就为最大值。
  3. 然后将剩余n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值。 如此反复执行,便能得到一个有序序列了。
//向下调整法
void AdjustDown(int* a, int n, int parent)
{int child = 2 * parent + 1;while (child < n){if (child + 1 < n && a[child + 1] > a[child]){child++;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = 2 * parent + 1;}else{break;}}
}//堆排序
void HeapSort(int* a, int n)
{//创建堆for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a, n, i);}//排序int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}

在十万个数据下面,堆排走了45ms,在一百万数据下面,走了473ms,效率还可以
在这里插入图片描述
在这里插入图片描述

六.快速排序

快速排序的平均时间复杂度是O(NlogN),但是在最坏情况下有可能是O(N^2),空间复杂度是O(logN)~O(N),不具有稳定性
在这里插入图片描述

快速排序(Quick Sort)是一种常用的排序算法。快速排序的基本思想是通过选择一个基准元素,将数组分为两部分,使得左边的元素都小于等于基准元素,右边的元素都大于等于基准元素。然后,对左右两部分分别进行快速排序,直到整个数组有序。

但是当数组已经有序时是最坏情况,快速排序的时间复杂度可能会达到O(N^2)。但是,在大多数情况下,快速排序的时间复杂度都非常接近O (NlogN)

快速排序优化的方法:

1.三数取中

可以看到假定最左边的数作为基准元素,会不准确,因为有可能是最大的数也有可能是最小的数,影响效率,我们可以选择三个数中间的数来作为基准元素

//三数取中法  left  midi  right
int GetMidi(int* a,int left,int right)
{int midi = (left + right) / 2;if (a[left] > a[midi]){if (a[midi] >= a[right]){return midi;}else if (a[left] < a[right]){return left;}else{return right;}}else{if (a[midi] <= a[right]){return midi;}else if (a[left] > a[right]){return left;}else{return right;}}
}

2.小区间优化

由于快速排序要递归数据区间,只要递归就要消耗空间,那么当数据区间比较小时,可以用插入排序,不用在递归了

//小区间排序 -> 插入排序
if ((right - left + 1) < 10)
{//注意数组取的位置和数组的长度InsertSort(a+left, right - left + 1);
}

快速排序有三种排序方法:

hoare

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
此时,数据6已经排好了,只需要递归它的左边与右边进行排序即可

// 快速排序hoare版本
int PartSort1(int* a, int left, int right)
{//三数取中int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;int begin = left;int end = right;while (begin < end){while (begin < end && a[end] >= a[keyi]){end--;}while (begin < end && a[begin] <= a[keyi]){begin++;}Swap(&a[begin], &a[end]);}Swap(&a[keyi], &a[begin]);return begin;
}

挖坑法

在这里插入图片描述
在这里插入图片描述

// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{//三数取中int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int key = a[left];int begin = left;int end = right;while (begin < end){while (begin < end && a[end] >= key){end--;}a[begin] = a[end];while (begin < end && a[begin] <= key){begin++;}a[end] = a[begin];}a[begin] = key;return begin;
}

前后指针

在这里插入图片描述
在这里插入图片描述

// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{//三数取中int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;int prev = left;int cur = prev + 1;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[cur], &a[prev]);}cur++;}Swap(&a[prev], &a[keyi]);return prev;
}

快排递归实现:

以上三种方法针对的是每一次排序,我们还需要递归剩下的区间来完成数据的有效

void QuickSort(int* a, int left, int right)
{//[left,right]是闭区间if (left >= right){return;}//小区间排序 -> 插入排序if ((right - left + 1) < 10){//注意数组取的位置和数组的长度InsertSort(a+left, right - left + 1);}else{//随便选择一种排序方法即可int keyi = PartSort3(a,left,right);//[left,keyi-1] keyi [keyi+1,right]//递归左边与右边QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);}
}

在十万个数据下面,快速排序递归方法走了7ms,在一百万数据下面,走了80ms,可见效率非常快

在这里插入图片描述

在这里插入图片描述

快排非递归实现:

众所周知,递归会在栈上开辟空间,当递归的深度很大时,会导致栈溢出,这时我们可以把快速排序改成用非递归的形式实现

递归改为非递归的方法有两种:

  1. 用循环实现
  2. 利用栈来实现

现在我们利用栈来实现,这里的栈是数据结构里面的栈。因为内存的栈的空间很小,而堆的空间很大,数据结构的栈就是在堆上开辟的

在这里插入图片描述

// 快速排序 非递归实现 
//利用栈来实现
void QuickSortNonR(int* a, int left, int right)
{ST st;STInit(&st);STPush(&st, right);STPush(&st, left);while (!STEmpty(&st)){int begin = STTop(&st);STPop(&st);int end = STTop(&st);STPop(&st);int keyi = PartSort3(a, begin, end);//[begin,keyi-1] keyi [keyi+1,end]if (keyi + 1 < end){STPush(&st, end);STPush(&st, keyi + 1);}if (begin < keyi - 1){STPush(&st, keyi - 1);STPush(&st, begin);}}STDestroy(&st);
}

在十万个数据下面,快速排序非递归方法走了19ms,在一百万数据下面,走了283ms,可见效率与递归方法的差不多

在这里插入图片描述
在这里插入图片描述

七、归并排序

归并排序的时间复杂度是O(NlongN),空间复杂度是O(N),具有稳定性

在这里插入图片描述

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide
andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并排序核心步骤:
将数据划分区间,区间大小从小到大,每个区间进行归并,归并完成后就要拷贝回去

在这里插入图片描述

归并递归实现:

void _MergeSort(int* a, int* tmp, int left,int right)
{//递归if (left >= right){return;}int mid = (left + right) / 2;//[left,mid][mid+1,right]_MergeSort(a, tmp, left, mid);_MergeSort(a, tmp, mid+1, right);//归并int begin1 = left;int end1 = mid;int begin2 = mid + 1;int end2 = right;int i = left;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}//拷贝memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}//归并排序
void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(n * sizeof(int));if (tmp == NULL){perror("malloc fail");return;}_MergeSort(a, tmp, 0, n - 1);free(tmp);tmp = NULL;
}

在十万个数据下面,归并排序递归方法走了9ms,在一百万数据下面,走了93ms,可见效率非常快
在这里插入图片描述
在这里插入图片描述

归并非递归实现:

上面我们提到递归会有栈溢出的问题,所有我们可以尝试一下归并的非递归的实现方法

递归改为非递归的方法有两种:

  1. 用循环实现
  2. 利用栈来实现

这次我们使用循环来实现,归并的核心就是分区间进行排序,既然如此, 我们可以设置分组gap的初始值为1,然后归并一次,归并完成后gap乘以2,来进行下一次的归并区间,不断重复此步骤直到gap 大于等于 数组长度时退出循环

//归并排序 非递归实现
void MergeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail");return;}//分组排序 每次两个gap组进行归并排序int gap = 1;while (gap < n){for (int i = 0; i < n; i+=2*gap){int begin1 = i;int end1 = i + gap - 1;int begin2 = i + gap;int end2 = i + 2 * gap - 1;int j = i;//printf("[%d,%d],[%d,%d]", begin1, end1, begin2, end2);//如果begin2越界了,就不归并if (begin2 >= n){break;}//如果end2越界了,就修正if (end2 >= n){end2 = n - 1;}//归并排序while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}//拷贝memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));}gap *= 2;}free(tmp);tmp = NULL;
}

在十万个数据下面,归并排序非递归方法走了9ms,在一百万数据下面,走了87ms,可见效率非常快

在这里插入图片描述
在这里插入图片描述

八、各个排序的对比图

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/363061.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小程序发布必须进行软件测试吗?测试内容有哪些?

在如今移动互联网时代&#xff0c;小程序已成为许多企业广泛采用的一种营销手段&#xff0c;然而&#xff0c;发布小程序之前进行充分的软件测试是至关重要的&#xff0c;因为它不仅可以确保小程序的质量&#xff0c;还可以避免潜在的风险和损失。 在进行小程序发布前进行软件…

UniApp 开发微信小程序教程(一):准备工作和环境搭建,项目结构和配置

文章目录 一、准备工作和环境搭建1. 安装 HBuilderX步骤&#xff1a; 2. 注册微信开发者账号步骤&#xff1a; 3. 创建 UniApp 项目步骤&#xff1a; 二、项目结构和配置1. UniApp 项目结构2. 配置微信小程序修改 manifest.json修改 pages.json 3. 添加首页文件index.vue 示例&…

linux rocky9.2系统搭建sqle数据库审核平台

文章目录 前言一、环境准备?二、开始部署前言 关于SQLE SQLE 是由上海爱可生信息技术股份有限公司 开发并开源,支持SQL审核、索引优化、事前审核、事后审核、支持标准化上线流程、原生支持 MySQL 审核且数据库类型可扩展的 SQL 审核工具。 产品特色 支持通过插件的形式扩展…

14-6 小型语言模型在商业应用中的使用指南

人工智能 (AI) 在商业领域的发展使众多工具和技术成为人们关注的焦点&#xff0c;其中之一就是语言模型。这些大小和复杂程度各异的模型为增强业务运营、客户互动和内容生成开辟了新途径。本指南重点介绍小型语言模型、它们的优势、实际用例以及企业如何有效利用它们。 基础知识…

2小时动手学习扩散模型(pytorch版)【入门版】【代码讲解】

2小时动手学习扩散模型&#xff08;pytorch版&#xff09; 课程地址 2小时动手学习扩散模型&#xff08;pytorch版&#xff09; 课程目标 给零基础同学快速了解扩散模型的核心模块&#xff0c;有个整体框架的理解。知道扩散模型的改进和设计的核心模块。 课程特色&#xf…

边缘计算VNC智能盒子如何助力HMI设备实现二次开发?

HMI&#xff08;Human-Machine Interface&#xff09;又称人机界面&#xff0c;是用户与机器之间交互和通信的媒介。今天带你了解智能盒子如何助力HMI设备实现二次开发&#xff1f; HMI设备被广泛应用在工业自动化中&#xff0c;具有显示设备信息&#xff0c;实时监测&#xf…

Dev++软件连接Sqlite

Dev中的C语言使用连接sqlite数据库 1.下载sqlite3.dll和sqlite3.h sqlite3.dll类似于.c文件&#xff0c;封装了函数的原型。 sqlite3.h库文件声明函数。 官网地址下载&#xff1a;sqlite sqlite-amalgamation-3460000.zipsqlite-dll-win-x64-3460000.zip 2.新建c项目 1. …

CSS|05 继承性与优先级

继承性 一、继承性的特点&#xff1a; 1.外层元素身上的样式会被内层元素所继承 2.如果内层元素与外层元素身上的演示相同时&#xff0c;外层元素的样式会被内层元素所覆盖 二、关于继承性的问题 是不是所有样式都能被继承&#xff1f; 答&#xff1a;并不是所有样式能被继承…

Kubernetes 中 ElasticSearch 中的 MinIO 审核日志

无论您是在本地还是在云中&#xff0c;您都希望确保以同构的方式设置工具和流程。无论在何处访问基础结构&#xff0c;您都希望确保用于与各种基础结构进行交互的工具与其他区域相似。 考虑到这一点&#xff0c;在部署您自己的 MinIO 对象存储基础架构时&#xff0c;深入了解您…

PS-抠图

在一个图片中&#xff0c;当你单独用到一个人物&#xff0c;或者物品的时候&#xff0c;你可以选择抠图&#xff0c;单独把这个人物模型给扣下来&#xff0c;不要他的背景&#xff0c;不要其他物品。 在PS中&#xff0c;我们看到一个大熊猫&#xff0c;当我们想用到这个熊猫的…

flutter开发实战-ListWheelScrollView与自定义TimePicker时间选择器

flutter开发实战-ListWheelScrollView与自定义TimePicker 最近在使用时间选择器的时候&#xff0c;需要自定义一个TimePicker效果&#xff0c;当然这里就使用了ListWheelScrollView。ListWheelScrollView与ListView类似&#xff0c;但ListWheelScrollView渲染效果类似滚筒效果…

【数据结构】计数排序等排序

&#x1f4e2;博客主页&#xff1a;https://blog.csdn.net/2301_779549673 &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01; &#x1f4e2;本文由 JohnKi 原创&#xff0c;首发于 CSDN&#x1f649; &#x1f4e2;未来很长&#…

2024国际数字能源展,推动全球能源产业转型升级和可持续发展

随着全球对能源安全和可持续发展的日益关注&#xff0c;数字能源技术作为推动能源革命的重要力量&#xff0c;正逐步成为国际能源领域的新热点。2023年6月29日至7月2日&#xff0c;深圳会展中心成功举办了全球首个以数字能源为主题的2023国际数字能源展&#xff0c;这一盛会的成…

音视频基础

音视频基础 一、音视频录制原理二、音视频播放原理三、图像表示RGB-YUVV1.图像基础概念1.1 像素1.2 分辨率1.3 位深1.4 帧率1.5 码率1.6 Stride跨距 2.RGB、YUV深入讲解2.1 RGB2.2 YUV2.2.1 YUV采样表示法2.2.2 YUV数据存储 2.3 RGB和YUV的转换(了解)为什么解码出错显示绿屏&am…

stm32cubemx,adc采样的几种方总结,触发获取adc值的方法dma timer trigger中断

stm32cubemx adc采样的几种方总结&#xff0c;触发获取adc值的方法 timer trigger中断 方法1&#xff0c;软件触发方法2&#xff1a;,Timer触发ADC采集通过DMA搬运 触发获取adc值的方法 Regular Conversion launched by software 软件触发 调用函数即可触发ADC转换 Timer X Cap…

STM32 HAL库 外部中断 实现按键控制LED亮灭

目录 1、为什么使用GPIO外部中断控制LED亮灭&#xff1f; 2、NVIC嵌套向量中断控制器 3、EXTI外部中断 4、项目的硬件排线 5、STM32CUBE_MX配置 6、HAL库代码 7、实际效果 1、为什么使用GPIO外部中断控制LED亮灭&#xff1f; 实现LED亮灭控制有很多方式&#xff0c;其中…

前端开源项目Vuejs:让前端开发如虎添翼!

文章目录 引言一、Vue.js的优势二、Vue.js实战技巧三、Vue.js社区与资源结语 引言 在前端开发的世界里&#xff0c;Vue.js凭借其简洁、轻量且功能强大的特性&#xff0c;逐渐崭露头角&#xff0c;成为众多开发者心中的首选框架。 一、Vue.js的优势 Vuejs项目地址 Vue.js之…

什么是GPIO口,GPIO口最简单的input/output

目录 一&#xff0c;什么是GPIO口 二&#xff0c;GPIO内部结构 三&#xff0c;GPIO口工作模式 一&#xff0c;什么是GPIO口 1.GPIO口是通用输入输出端口&#xff08;General-purpose input/output&#xff09;的英文缩写&#xff0c;是所有的微控制器必不可少的外设之一&…

AVI 是什么格式,AVI 格式用什么播放器打开?

AVI 是什么格式&#xff1f;提到 AVI 格式想必大家多数会想到在 DVD 横行的年代&#xff0c;光盘中所包含的媒体视频格式多是以 AVI 格式存储。AVI 是一个非常通用的容器格式&#xff0c;支持多种视频和音频编解码器。这意味着从DVD中提取视频内容时&#xff0c;可以通过转码为…

浅谈交换机

这篇文章和大家分享一下交换机的通信原理 在说交换机前&#xff0c;首先要了解几个网络知识&#xff1a;到现在为止IP地址分为IPv4和IPv6&#xff0c;IPv4是由32位二进制组成&#xff0c;IPv6则由128位二进制组成&#xff0c;计算机的底层代码其实就是二进制 例如&#xff1a;1…