分治精炼宝库-----快速排序运用(⌯꒪꒫꒪)੭

目录

一.基本概念:

一.颜色分类:

二.排序数组:

三.数组中的第k个最大元素:

解法一:快速选择算法

解法二:简单粗暴优先级队列

 四.库存管理Ⅲ:

解法一:快速选择

解法二:简单粗暴排序

解法三:简单粗暴优先级队列


一.基本概念:

🐻在计算机科学中,分治法是一种很重要的算法。字面上的解释就是“分而治之”,就是把一个复杂的问题分成两个或则更多个相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

 任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。🧐分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

当我们对分治算法有了以上的一定了解后,来练习几道题目加深理解~~

注(本文承接上文:分治精炼宝库----归并排序应用( ´◔︎ ‸◔︎`)_用分治法归并排序-CSDN博客)

一.颜色分类:

说明:这里我们用到的快速排序会使用数组分三块的思想(下文会详细说明),从数组中随机取一个元素key,将数组划分为三个区域,区域① < key ,区域 ② = key ,区域③ > key

题目链接:75. 颜色分类 - 力扣(LeetCode)

算法思路:

  1. 使用左指针left和右指针right来划分数组,初始时left为-1,right为数组长度n。
  2. 遍历数组nums,使用变量i作为当前遍历的索引。
  3. 如果nums[i]等于0,则将nums[i]与left+1位置的值交换,并将left和i都加1。
  4. 如果nums[i]等于1,则继续遍历下一个值。
  5. 如果nums[i]等于2,则将nums[i]与right-1位置的值交换,并将right和i都减1。
  6. 重复步骤4-6,直到遍历完成整个数组。

核心步骤:

代码详解:

class Solution {public void sortColors(int[] nums) {//将数组划分为三个区域[0,1,2]int n = nums.length;for(int i = 0,left = -1,right = n;i < right;){if(nums[i] == 0){swap(nums,++left,i++);}else if(nums[i] == 1){i++;}else{swap(nums,--right,i);}}}public void swap(int[] nums,int i,int j){int tmp = nums[i];nums[i] = nums[j];nums[j] = tmp;}
}

运行结果:

二.排序数组:

题目链接:912. 排序数组 - 力扣(LeetCode)

这里我们使用快速排序来解决,首先,我们来一起看一下快速排序的核心框架:

void sort(int[] nums, int lo, int hi) {if (lo >= hi) {return;}// 对 nums[lo..hi] 进行切分// 使得 nums[lo..p-1] <= nums[p] < nums[p+1..hi]int p = partition(nums, lo, hi);// 去左右子数组进行切分sort(nums, lo, p - 1);sort(nums, p + 1, hi);
}

快速排序的核心即是先将一个元素排好序,再将剩下的元素排好序

 快速排序的核心无疑是 partition 函数, partition 函数的作用是在 nums[lo..hi] 中寻找一个切分点 p,通过交换元素使得 nums[lo..p-1] 都小于等于 nums[p],且 nums[p+1..hi] 都大于 nums[p].

一个元素左边它小,右边都比它大,什么意思?不就是把它放到正确的排好序的位置上了吗?

所以 partition 函数干的事情,其实就是把 nums[p] 这个元素排好序了。

一个元素被排好序了,然后呢?你再把剩下的元素排好序不就行了嘛,排序图解:

其实我们不难发现,拍好序的数组就是一颗二叉搜索树!快速排序的过程其实也就是构造一棵二叉搜索树的过程

 但谈到二叉搜索树的构造,那就不得不说二叉搜索树不平衡的极端情况,极端情况下二叉搜索树会退化成一个链表,导致操作效率大幅降低。这也和快速排序是一样的道理,特别是数组元素都相同的情况下,时间复杂度会大幅上升。

为了避免这种情况,我们要引入随机性:

用代码表示就是(取left ~ right 区间的随机数,加上偏移量left):

int key = nums[new Random().nextInt(r - l + 1) + l];

快排思路: 

从数组中随机取一个元素key,将数组划分为三个区域,区域① < key ,区域 ② = key ,

区域③ > key,然后排序①区间和②区间即可

代码详解:

class Solution {public int[] sortArray(int[] nums) {quickSort(nums,0,nums.length - 1);return nums;}public void quickSort(int[] nums,int l,int r){if(l >= r) return ;//设置一个随机数,然后将数组分为三块int key = nums[new Random().nextInt(r - l + 1) + l];int left = l - 1,cur = l,right = r + 1;while(cur < right){if(nums[cur] < key){swap(nums,++left,cur++);}else if(nums[cur] == key){cur++;}else{swap(nums,--right,cur);}}//在接着往后面找,此时数组区域[l,left] [left + 1,right - 1] [right,r]quickSort(nums,l,left);quickSort(nums,right,r);}public void swap(int[] nums,int i,int j){int tmp = nums[i];nums[i] = nums[j];nums[j] = tmp;}
}

运行结果:

三.数组中的第k个最大元素:

题目链接:215. 数组中的第K个最大元素 - 力扣(LeetCode)

解法一:快速选择算法

思路:

在快排中,当我们把数组「分成三块」之后: [l, left] [left + 1, right - 1] [right, r] ,我们可以通过计算每⼀个区间内元素的「个数」,进⽽推断出我们要找的元素是 在「哪⼀个区间」⾥⾯。那么我们可以直接去「相应的区间」去寻找最终结果就好了:

 代码详解:

class Solution {public int findKthLargest(int[] nums, int k) {//快速选择算法,返回第k大的元素int res = quickSort(nums,0,nums.length - 1,k);return res;}public int quickSort(int[] nums,int l,int r,int k){//当只有一个元素或则区间不存在时,直接返回if(l >= r) return nums[l];//数组分三块 [l,left][left + 1,right - 1][right,r]int key = nums[new Random().nextInt(r - l + 1) + l];int left = l - 1,cur = l,right = r + 1;while(cur < right){if(nums[cur] < key){swap(nums,++left,cur++);}else if(nums[cur] == key){cur++;}else{swap(nums,--right,cur);}}//分别对a b c 三个区间做判断,合适的区间int b = right - left - 1,c = r - right + 1;if(c >= k) return quickSort(nums,right,r,k);else if(b + c >= k) return key;//如果都不是,就去[l,left]区间找k - b - c大的元素else return quickSort(nums,l,left,k - b - c);}public void swap(int[] nums,int i,int j){int tmp = nums[i];nums[i] = nums[j];nums[j] = tmp;}
}

运行结果: 

解法二:简单粗暴优先级队列

代码详解:

class Solution {public int findKthLargest(int[] nums, int k) {PriorityQueue<Integer> heap = new PriorityQueue<>((o1,o2)->{return o2.compareTo(o1);});for(int i = 0;i < nums.length;i++){heap.offer(nums[i]);}int res = 0;for(int i = 0;i < k;i++){res = heap.poll();}return res;}
}

 运行结果:

 四.库存管理Ⅲ:

题目链接:LCR 159. 库存管理 III - 力扣(LeetCode)

解法一:快速选择

 思路:

在快排中,当我们把数组「分成三块」之后: [l, left] [left + 1, right - 1] [right, r] ,我们可以通过计算每⼀个区间内元素的「个数」,进⽽推断出最⼩的k个数在哪 些区间⾥⾯,那么我们可以直接去「相应的区间」继续划分数组即可:

 代码详解:

class Solution {public int[] inventoryManagement(int[] stock, int k) {quickSort(stock,0,stock.length - 1,k);int[] res = new int[k];for(int i = 0;i < k;i++){res[i] = stock[i];}return res;}public void quickSort(int[] nums,int l,int r,int k){if(l >= r) return ;//随机取数int key = nums[new Random().nextInt(r - l + 1) + l];int left = l - 1,cur = l,right = r + 1;while(cur < right){if(nums[cur] < key){swap(nums,++left,cur++);}else if(nums[cur] == key){cur++;}else{swap(nums,--right,cur);}}//寻找区间最小k个值[l,left] [left + 1,right - 1][right,r]int a = left - l + 1,b = right - left - 1;if(a > k) quickSort(nums,l,left,k);else if(a + b >= k) return ;else quickSort(nums,right,r,k - a - b);}public void swap(int[] nums,int i,int j){int tmp = nums[i];nums[i] = nums[j];nums[j] = tmp;}
}

运行结果:

解法二:简单粗暴排序

代码详解:

class Solution {public int[] inventoryManagement(int[] stock, int cnt) {Arrays.sort(stock);int[] res = new int[cnt];for(int i = 0;i < cnt;i++){res[i] = stock[i];}return res;}
}

运行结果:

解法三:简单粗暴优先级队列

代码详解:

class Solution {public int[] inventoryManagement(int[] stock, int cnt) {PriorityQueue<Integer> heap = new PriorityQueue<>();for(int i = 0; i < stock.length; i++){heap.offer(stock[i]);}int[] res = new int[cnt];for(int i = 0;i < cnt;i++){res[i] = heap.poll();}return res;}
}

参考资料:

 五大常用算法之一:分治算法 - Will_Don - 博客园 (cnblogs.com)

《labuladong算法笔记》

封面来自:《hello 算法》

结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/365219.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Github 2024-06-21 开源项目日报 Top10

根据Github Trendings的统计,今日(2024-06-21统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量TypeScript项目3Python项目3Java项目2非开发语言项目2JavaScript项目1Rust项目1Dart项目1HTML项目1Vue项目1C++项目1TensorFlow: 机器学习的开源…

【Linux】IO多路复用——select,poll,epoll的概念和使用,三种模型的特点和优缺点,epoll的工作模式

文章目录 Linux多路复用1. select1.1 select的概念1.2 select的函数使用1.3 select的优缺点 2. poll2.1 poll的概念2.2 poll的函数使用2.3 poll的优缺点 3. epoll3.1 epoll的概念3.2 epoll的函数使用3.3 epoll的优点3.4 epoll工作模式 Linux多路复用 IO多路复用是一种操作系统的…

算力时代,算能(SOPHGO)的算力芯片/智算板卡/服务器选型

数字经济时代&#xff0c;算力成为支撑经济社会发展新的关键生产力&#xff0c;全球主要经济体都在加快推进算力战略布局。随着大模型持续选代&#xff0c;模型能力不断增强&#xff0c;带来算力需求持续增长。算力对数字经济和GDP的提高有显著的带动作用&#xff0c;根据IDC、…

EasyExcel数据导入

前言&#xff1a; 我先讲一种网上信息的获取方式把&#xff0c;虽然我感觉和后面的EasyExcel没有什么关系&#xff0c;可能是因为这个项目这个操作很难实现&#xff0c;不过也可以在此记录一下&#xff0c;如果需要再拆出来也行。 看上了网页信息&#xff0c;怎么抓到&#x…

C++:typeid4种cast转换

typeid typeid typeid是C标准库中提供的一种运算符&#xff0c;它用于获取类型的信息。它主要用于类型检查和动态类型识别。当你对一个变量或对象使用typeid运算符时&#xff0c;它会返回一个指向std::type_info类型的指针&#xff0c;这个信息包含了关于该类型名称、大小、基…

【嵌入式Linux】i.MX6ULL 时钟树——理论分析

文章目录 0. 时钟树结构0.1 参考手册 Chapter 18​: Clock Controller Module (CCM)0.2 时钟信号路径 1. 时钟源——晶振1.1 外部低频时钟 - CKIL1.1.1 CKIL 同步到 IPG_CLK 解释 1.2 外部高频时钟 - CKIH 和 内部振荡器1.3 总结1.4 缩写补充 2. PLL时钟2.1 i.MX6U 芯片 PLL 时…

【ESP32】打造全网最强esp-idf基础教程——14.VFS与SPIFFS文件系统

VFS与SPIFFS文件系统 这几天忙着搬砖&#xff0c;差点没时间更新博客了&#xff0c;所谓一日未脱贫&#xff0c;打工不能停&#xff0c;搬砖不狠&#xff0c;明天地位不稳呀。 不多说了&#xff0c;且看以下内容吧~ 一、VFS虚拟文件系统 先来看下文件系统的定义&#x…

力扣SQL50 连续出现的数字 distinct

Problem: 180. 连续出现的数字 &#x1f468;‍&#x1f3eb; 力扣官解 Code SELECT DISTINCTl1.Num AS ConsecutiveNums FROMLogs l1,Logs l2,Logs l3 WHEREl1.Id l2.Id - 1AND l2.Id l3.Id - 1AND l1.Num l2.NumAND l2.Num l3.Num ;

Unity实现简单的MVC架构

文章目录 前言MVC基本概念示例流程图效果预览后话 前言 在Unity中&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;框架是一种架构模式&#xff0c;用于分离游戏的逻辑、数据和用户界面。MVC模式可以帮助开发者更好地管理代码结构&#xff0c;提高代码的可维护性…

简单体验一下AI训练的过程

推荐一个站点 http://playground.tensorflow.org 有什么优点呢 这个是tensorflow官方的体验站点&#xff0c;以图形化的方式给出了训练过程中所需的各种因素。

帝国CMS(EmpireCMS)漏洞复现

简介 《帝国网站管理系统》英文译为Empire CMS&#xff0c;简称Ecms&#xff0c;它是基于B/S结构&#xff0c;且功能强大而帝国CMS-logo易用的网站管理系统。 帝国CMS官网&#xff1a;http://www.phome.net/ 参考相关漏洞分析文章&#xff0c;加上更详细的渗透测试过程。 参考…

计算机网络之体系结构

上节内容&#xff1a;数据通信原理 1.计算机网络体系结构 体系结构: 研究系统中各组成成分及其关系的一门学科。 计算机网络体系结构: 定义和描述一组用于计算机及其通信设施之间互连的标准和规范的集合&#xff0c;遵循这组规范可以很方便地实现计算机设备之间的通信。 相互…

车联网全方位安全适配与领先架构

设想一下如下场景&#xff1a; 您钟爱的座驾&#xff0c;在毫无外力破坏迹象的情况下&#xff0c;突然被侵入&#xff0c;远程启动&#xff0c;然后绝尘而去… 别以为这只是大银幕上的虚构桥段&#xff0c;事实上&#xff0c;这一幕在现实中已经上演。 某款备受欢迎的车型&a…

通讯:单片机串口和电脑通讯

目录 1.串口输出数据到电脑 硬件部分 串口输出数据到电脑的软件软件部分&#xff1a; 相关问题&#xff1a; 2.单片机串口--485--485转USB--电脑 串口&#xff0c;芯片&#xff0c;转换器&#xff0c;设备之间的通讯的接线&#xff0c;都是要TX--RX, RX--TX 交叉连接。 单…

论文阅读_优化RAG系统的检索

英文名称: The Power of Noise: Redefining Retrieval for RAG Systems 中文名称: 噪声的力量&#xff1a;重新定义RAG系统的检索 链接: https://arxiv.org/pdf/2401.14887.pdf 作者: Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campag…

MySQL周内训参照3、简单查询与多表联合复杂查询

基础查询 1、查询用户信息&#xff0c;仅显示用户的姓名与手机号&#xff0c;用中文显示列名。中文显示姓名列与手机号列 SELECT user_id AS 编号, phone AS 电话 FROM user; 2. 根据订购表进行模糊查询&#xff0c;模糊查询需要可以走索引&#xff0c;需要给出explain语句。…

基于bootstrap的12种登录注册页面模板

基于bootstrap的12种登录注册页面模板&#xff0c;分三种类型&#xff0c;默认简单的登录和注册&#xff0c;带背景图片的登录和注册&#xff0c;支持弹窗的登录和注册页面html下载。 微信扫码下载

【操作系统期末速成】 EP01 | 学习笔记(基于五道口一只鸭)

文章目录 一、前言&#x1f680;&#x1f680;&#x1f680;二、正文&#xff1a;☀️☀️☀️1.1 考点一&#xff1a;操作系统的概率及特征 三、总结&#xff1a;&#x1f353;&#x1f353;&#x1f353; 一、前言&#x1f680;&#x1f680;&#x1f680; ☀️ 回报不在行动…

HDFS详细介绍以及HDFS集群环境部署【hadoop组件HDFS笔记】(图片均为学习时截取的)

HDFS详细介绍 HDFS是什么 HDFS是Hadoop三大组件(HDFS、MapReduce、YARN)之一 全称是&#xff1a;Hadoop Distributed File System&#xff08;Hadoop分布式文件系统&#xff09;&#xff1b;是Hadoop技术栈内提供的分布式数据存储解决方案 可以在多台服务器上构建存储集群&…

Crontab命令详解:轻松驾驭Linux定时任务,提升系统效率

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》《MYSQL》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 引言&#xff1a; crond是Linux系统中用来定期执行命令或指定程序任务的一种服务或软件…