Transformer模型在多模态数据处理中扮演着重要角色,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。
Transformer工作原理四部曲:Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。
阶段一:Embedding(向量化)
“Embedding”在字面上的翻译是“嵌入”,但在机器学习和自然语言处理的上下文中,我们更倾向于将其理解为一种“向量化”或“向量表示”的技术。
(1)Tokenization(词元化):
对于文本数据:在自然语言处理(NLP)中,将输入的文本内容(如句子、段落或整个文档)拆分成更小的片段或元素,这些片段通常被称为词元(tokens)。
对于非文本数据(如音频、图像或视频):在音频处理中,音频信号可以被分割成帧(frames)作为音频词元;
在图像处理中,图像可以被分割成图像块(patches)作为图像词元;在视频处理中,视频可以被分割成视频块(patches)作为视频词元。
(2)Em