013、MongoDB常用操作命令与高级特性深度解析

目录

MongoDB常用操作命令与高级特性深度解析

1. 数据库操作的深入探讨

1.1 数据库管理

1.1.1 数据库统计信息

1.1.2 数据库修复

1.1.3 数据库用户管理

1.2 数据库事务

2. 集合操作的高级特性

2.1 固定集合(Capped Collections)

2.2 集合验证(Schema Validation)

2.3 Time-To-Live (TTL) 索引

3. 文档操作的高级技巧

3.1 复杂查询

3.1.1 正则表达式查询

3.1.2 数组查询

3.1.3 嵌套文档查询

3.2 高级更新操作

3.2.1 数组操作

3.2.2 条件更新

3.3 批量写操作

4. 索引策略与优化

4.1 复合索引

4.2 文本索引

4.3 地理空间索引

4.4 索引优化技巧

5. 高级聚合操作

5.1 复杂的聚合管道

5.2 使用 $lookup 进行关联查询

5.3 使用 $graphLookup 进行图形查询

5.4 使用 $bucket 进行数据分桶

6. MongoDB的高级特性和最佳实践

6.1 变更流(Change Streams)

6.2 数据加密

6.3 分片策略

6.4 性能优化

6.5 数据模型设计最佳实践

7. 实际应用案例深度剖析:基因组数据库系统

7.1 系统架构

7.2 数据模型优化

7.3 索引策略

7.4 分片策略

7.5 查询优化

7.6 数据导入优化

7.7 性能测试结果


MongoDB常用操作命令与高级特性深度解析

1. 数据库操作的深入探讨

1.1 数据库管理

1.1.1 数据库统计信息
db.stats()

这个命令会返回当前数据库的详细统计信息,包括数据大小、索引大小、集合数量等。输出示例:

{"db" : "mydb","collections" : 5,"views" : 0,"objects" : 1000,"avgObjSize" : 255.0,"dataSize" : 255000,"storageSize" : 290816,"numExtents" : 0,"indexes" : 7,"indexSize" : 151552,"fsUsedSize" : 4383506432,"fsTotalSize" : 62725623808,"ok" : 1
}

这些信息对于监控数据库性能和容量规划非常有用。

1.1.2 数据库修复
db.repairDatabase()

这个命令用于修复损坏的数据库。它会重建所有的集合和索引,但可能会很耗时。在执行此操作之前,建议先进行备份。

1.1.3 数据库用户管理
// 创建用户
db.createUser({user: "myuser",pwd: "mypassword",roles: [ { role: "readWrite", db: "mydb" } ]
})
​
// 删除用户
db.dropUser("myuser")
​
// 修改用户密码
db.changeUserPassword("myuser", "newpassword")
​
// 授予角色
db.grantRolesToUser("myuser", [ { role: "dbAdmin", db: "mydb" } ])
​
// 撤销角色
db.revokeRolesFromUser("myuser", [ { role: "dbAdmin", db: "mydb" } ])

这些命令用于管理数据库用户,对于实现细粒度的访问控制非常重要。MongoDB支持基于角色的访问控制(RBAC),可以精确控制用户对数据库的访问权限。

1.2 数据库事务

从MongoDB 4.0开始,支持多文档事务。以下是一个事务示例:

const session = db.getMongo().startSession();
session.startTransaction();
​
try {const accounts = session.getDatabase("mydb").getCollection("accounts");accounts.updateOne({ owner: "Alice" }, { $inc: { balance: -100 } });accounts.updateOne({ owner: "Bob" }, { $inc: { balance: 100 } });session.commitTransaction();console.log("Transaction successfully committed.");
} catch (error) {session.abortTransaction();console.log("Transaction aborted due to error: " + error);
} finally {session.endSession();
}

这个例子展示了如何在一个事务中执行多个操作,确保数据的一致性。事务特别适用于需要原子性的复杂操作,如资金转账。

注意事项:

  • 事务在副本集和分片集群中都可用,但在分片环境中可能会影响性能。

  • 事务有时间限制,默认为60秒。

  • 事务中的操作应尽量精简,以减少锁定时间。

2. 集合操作的高级特性

2.1 固定集合(Capped Collections)

固定集合是一种特殊类型的集合,它有固定的大小,当达到最大值时,新的文档会覆盖最旧的文档。

db.createCollection("logs", {capped: true,size: 5242880,max: 5000
})

这个命令创建了一个最大大小为5MB,最多包含5000个文档的固定集合。固定集合特别适合存储日志等需要按插入顺序保存并且可以被覆盖的数据。

固定集合的特点:

  • 插入顺序就是自然顺序,非常适合某些类型的日志。

  • 支持高吞吐量的插入操作。

  • 不支持删除操作,但可以调用drop()方法删除整个集合。

  • 不支持分片。

2.2 集合验证(Schema Validation)

MongoDB允许为集合定义验证规则:

db.createCollection("users", {validator: {$jsonSchema: {bsonType: "object",required: [ "name", "email", "age" ],properties: {name: {bsonType: "string",description: "must be a string and is required"},email: {bsonType: "string",pattern: "^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}$",description: "must be a valid email address and is required"},age: {bsonType: "int",minimum: 18,maximum: 99,description: "must be an integer in [ 18, 99 ] and is required"},gender: {enum: [ "Male", "Female", "Other" ],description: "can only be one of the enum values and is optional"}}}},validationAction: "error"
})

这个例子定义了一个带有字段验证的用户集合,确保插入的数据符合预定义的模式。

验证的好处:

  • 确保数据一致性和完整性。

  • 减少应用层的验证逻辑。

  • 提高数据质量。

注意:

  • 验证只在插入和更新操作时执行。

  • 可以设置validationAction为"warn"以允许插入不符合规则的文档,但会记录警告。

  • 对已存在的文档不会进行验证,除非它们被更新。

2.3 Time-To-Live (TTL) 索引

TTL索引允许MongoDB自动删除过期的文档:

db.sessions.createIndex( { "lastModifiedDate": 1 }, { expireAfterSeconds: 3600 } )

这个命令创建了一个TTL索引,文档将在lastModifiedDate字段指定的时间一小时后被自动删除。

TTL索引的应用场景:

  • 会话管理

  • 缓存数据

  • 日志数据

注意:

  • TTL索引只能在单个字段上创建。

  • 删除操作是后台进行的,可能有一定的延迟。

3. 文档操作的高级技巧

3.1 复杂查询

3.1.1 正则表达式查询
db.users.find({ name: /^A/ }) // 查找名字以A开头的用户

正则表达式查询允许进行复杂的字符串匹配。

3.1.2 数组查询
// 查找兴趣包含both "reading" 和 "hiking" 的用户
db.users.find({ interests: { $all: ["reading", "hiking"] } })
​
// 查找至少有3个兴趣的用户
db.users.find({ interests: { $size: 3 } })
​
// 使用$elemMatch查询数组中的元素
db.inventory.find({dim_cm: { $elemMatch: { $gt: 22, $lt: 30 } }
})

这些查询展示了MongoDB强大的数组查询能力。

3.1.3 嵌套文档查询
// 查找居住在New York的用户
db.users.find({ "address.city": "New York" })
​
// 使用$elemMatch查询嵌套数组
db.schools.find({zipcode: "63109",students: { $elemMatch: { school: 102, age: { $gt: 15 } } }
})

这些例子展示了如何查询嵌套文档和数组。

3.2 高级更新操作

3.2.1 数组操作
// 向数组添加元素(如果不存在)
db.users.updateOne({ name: "Alice" },{ $addToSet: { interests: "gardening" } }
)
​
// 从数组中移除元素
db.users.updateOne({ name: "Alice" },{ $pull: { interests: "hiking" } }
)
​
// 更新数组中的特定元素
db.users.updateOne({ name: "Alice", "scores.type": "exam" },{ $set: { "scores.$.value": 95 } }
)

这些操作展示了如何高效地管理文档中的数组字段。

3.2.2 条件更新
// 只有在年龄小于30时才更新
db.users.updateOne({ name: "Bob", age: { $lt: 30 } },{ $set: { status: "young" } }
)
​
// 使用$inc和$min组合
db.products.updateOne({ sku: "abc123" },{$inc: { quantity: -2 },$min: { quantity: 0 }}
)

这些例子展示了如何进行有条件的更新和原子操作。

3.3 批量写操作

const bulkOps = [{ insertOne: { document: { name: "Dave", age: 28 } } },{ updateOne: { filter: { name: "Alice" }, update: { $inc: { age: 1 } } } },{ deleteOne: { filter: { name: "Charlie" } } },{ replaceOne: { filter: { name: "Bob" }, replacement: { name: "Robert", age: 32 }, upsert: true } }
];
​
db.users.bulkWrite(bulkOps, { ordered: false });

这个例子展示了如何在一个操作中执行多个写入任务,提高效率。ordered: false选项允许MongoDB并行执行这些操作,进一步提高性能。

注意:

  • 批量写操作可以大大提高写入效率,特别是在需要执行大量小型写操作时。

  • 使用ordered: false可以提高性能,但要注意操作之间的依赖关系。

  • 批量写操作支持原子性,即使部分操作失败,也可以回滚所有更改。

4. 索引策略与优化

4.1 复合索引

db.users.createIndex({ age: 1, name: 1 })

这个索引支持按年龄排序的查询,以及年龄和姓名的组合查询。

复合索引的设计原则:

  1. 最常用的查询字段放在前面。

  2. 等值查询的字段放在范围查询字段之前。

  3. 排序字段应包含在索引中。

4.2 文本索引

db.articles.createIndex({ content: "text" })
​
// 使用文本索引进行全文搜索
db.articles.find({ $text: { $search: "MongoDB tutorial" } })
​
// 文本搜索并按相关性排序
db.articles.find({ $text: { $search: "MongoDB tutorial" } },{ score: { $meta: "textScore" } }
).sort({ score: { $meta: "textScore" } })

文本索引支持高效的全文搜索。

注意:

  • 每个集合只能有一个文本索引。

  • 文本索引可能会占用大量存储空间。

4.3 地理空间索引

db.places.createIndex({ location: "2dsphere" })
​
// 查找附近的地点
db.places.find({location: {$near: {$geometry: {type: "Point",coordinates: [ -73.9667, 40.78 ]},$maxDistance: 1000}}
})
​
// 查找在多边形内的地点
db.places.find({location: {$geoWithin: {$geometry: {type: "Polygon",coordinates: [[[ -73.9, 40.8 ],[ -73.9, 40.7 ],[ -74.0, 40.7 ],[ -74.0, 40.8 ],[ -73.9, 40.8 ]]]}}}
})

地理空间索引支持基于位置的查询,对于开发位置服务的应用非常有用。

4.4 索引优化技巧

  • 使用 explain() 分析查询性能

db.users.find({ age: { $gt: 30 } }).explain("executionStats")

这会提供详细的查询执行统计信息,帮助识别性能瓶颈。

  • 定期检查索引使用情况,删除未使用的索引

db.collection.aggregate([{ $indexStats: {} }
])

这个命令可以显示每个索引的使用统计信息。

  • 对于大集合,考虑在后台创建索引

db.users.createIndex({ email: 1 }, { background: true })

后台创建索引不会阻塞其他数据库操作。

  • 使用覆盖索引来提高查询效率

db.users.find({ age: { $gt: 30 } }, { _id: 0, name: 1, age: 1 })

如果有一个包含agename字段的索引,这个查询可以完全由索引覆盖,无需访问文档。

  • 使用部分索引减少索引的大小

db.restaurants.createIndex({ cuisine: 1, name: 1 },{ partialFilterExpression: { rating: { $gt: 5 } } }
)

这个索引只包含评分大于5的餐厅,可以显著减少索引大小。

部分索引的优势:

  • 减少索引的存储空间

  • 提高索引的效率

  • 降低索引维护的开销

注意:使用部分索引时,查询必须包含索引的过滤条件才能使用该索引。

5. 高级聚合操作

5.1 复杂的聚合管道

db.orders.aggregate([{ $match: { status: "completed", orderDate: { $gte: new Date("2023-01-01") } } },{ $group: {_id: { $dateToString: { format: "%Y-%m-%d", date: "$orderDate" } },totalRevenue: { $sum: "$total" },averageOrder: { $avg: "$total" },orderCount: { $sum: 1 }}},{ $sort: { totalRevenue: -1 } },{ $limit: 10 },{ $project: {date: "$_id",totalRevenue: { $round: ["$totalRevenue", 2] },averageOrder: { $round: ["$averageOrder", 2] },orderCount: 1,_id: 0}}
])

这个聚合管道执行以下操作:

  1. 筛选已完成的订单和2023年之后的订单

  2. 按日期分组,计算每天的总收入、平均订单金额和订单数量

  3. 按总收入降序排序

  4. 限制结果为前10条

  5. 重塑输出格式,包括四舍五入金额到小数点后两位

5.2 使用 $lookup 进行关联查询

db.orders.aggregate([{$lookup: {from: "customers",localField: "customerId",foreignField: "_id",as: "customerInfo"}},{ $unwind: "$customerInfo" },{$project: {orderId: 1,total: 1,"customerInfo.name": 1,"customerInfo.email": 1}}
])

这个例子展示了如何使用 $lookup 来关联订单和客户信息。

$lookup 的高级用法:

db.orders.aggregate([{$lookup: {from: "inventory",let: { order_item: "$item", order_qty: "$quantity" },pipeline: [{ $match:{ $expr:{ $and:[{ $eq: [ "$item",  "$$order_item" ] },{ $gte: [ "$instock", "$$order_qty" ] }]}}},{ $project: { item: 1, instock: 1 } }],as: "inventoryDocs"}}
])

这个高级 $lookup 示例展示了如何使用管道在关联过程中执行复杂的匹配和转换。

5.3 使用 $graphLookup 进行图形查询

db.employees.aggregate([{$graphLookup: {from: "employees",startWith: "$reportsTo",connectFromField: "reportsTo",connectToField: "_id",as: "reportingHierarchy",maxDepth: 5,depthField: "level"}}
])

这个聚合操作可以查询员工的完整报告链,最多追溯5级,并记录每个员工在层级中的深度。

$graphLookup 的应用场景:

  • 组织结构查询

  • 社交网络关系分析

  • 产品类别层次结构

5.4 使用 $bucket 进行数据分桶

db.sales.aggregate([{$bucket: {groupBy: "$amount",boundaries: [ 0, 100, 500, 1000, Infinity ],default: "Other",output: {"count": { $sum: 1 },"total": { $sum: "$amount" },"avg": { $avg: "$amount" }}}}
])

这个聚合操作将销售数据按金额分成不同的桶,并计算每个桶的统计信息。

6. MongoDB的高级特性和最佳实践

6.1 变更流(Change Streams)

变更流允许应用程序实时监控数据库的变化:

const changeStream = db.collection('users').watch();
changeStream.on('change', (change) => {console.log(change); // 输出变更信息
});

变更流的高级用法:

const pipeline = [{ $match: { 'fullDocument.status': 'active' } },{ $project: { 'fullDocument.name': 1, 'fullDocument.email': 1 } }
];
​
const changeStream = db.collection('users').watch(pipeline);
changeStream.on('change', (change) => {console.log(change.fullDocument);
});

这个例子展示了如何使用聚合管道来过滤和转换变更事件。

变更流的应用场景:

  • 实时数据同步

  • 缓存失效

  • 事件驱动架构

6.2 数据加密

MongoDB企业版提供静态加密和传输加密:

db.createCollection("sensitiveData", {encryptedFields: {fields: [{path: "ssn",keyId: UUID("12345678-1234-1234-1234-123456789012"),bsonType: "string",queries: { "equalTo": true }}]}
})

这个例子创建了一个集合,其中的 ssn 字段会被自动加密。

加密的最佳实践:

  • 使用强密钥管理系统

  • 定期轮换加密密钥

  • 只加密真正敏感的数据,以平衡性能和安全性

6.3 分片策略

对于大规模数据,MongoDB的分片功能可以提供水平扩展能力:

sh.enableSharding("mydb")
sh.shardCollection("mydb.users", { "userId": "hashed" })

这个命令对 users 集合按 userId 的哈希值进行分片。

分片的考虑因素:

  • 选择合适的分片键(shard key)

  • 避免热点分片

  • 考虑数据本地性

  • 平衡查询分布和写入分布

6.4 性能优化

  • 使用适当的写入关注(Write Concern)和读取关注(Read Concern)

db.collection.insertOne({ item: "example" },{ writeConcern: { w: "majority", wtimeout: 5000 } }
)
​
db.collection.find().readConcern("majority")
  • 使用投影来减少网络传输

db.users.find({}, { name: 1, email: 1, _id: 0 })
  • 使用 $hint 强制使用特定索引

db.users.find({ age: { $gt: 30 }, city: "New York" }).hint({ age: 1, city: 1 })
  • 使用 allowDiskUse 处理大型聚合操作

db.orders.aggregate([// 复杂的聚合管道
], { allowDiskUse: true })
  • 定期运行 db.runCommand({ compact: 'collectionName' }) 来碎片整理和回收空间

6.5 数据模型设计最佳实践

  1. 嵌入 vs 引用:根据数据访问模式选择适当的模型

  2. 避免过深的嵌套:通常不超过3层

  3. 适当反规范化:提高读取性能

  4. 考虑文档增长:预留足够空间或使用桶设计模式

  5. 使用数组时要小心:大型数组可能导致性能问题

7. 实际应用案例深度剖析:基因组数据库系统

让我们深入探讨Wang等人(2019)的GenomeDB系统[1],并讨论其架构设计和实现细节。

7.1 系统架构

GenomeDB采用了分布式架构,主要包括以下组件:

  1. 数据导入模块

  2. 查询处理模块

  3. 数据存储层(MongoDB分片集群)

  4. 缓存层(Redis)

  5. 负载均衡器(HAProxy)

7.2 数据模型优化

研究人员对基因变异数据模型进行了优化,以平衡查询效率和存储效率:

{_id: ObjectId("..."),chrom: "1",pos: 1000000,ref: "A",alt: "G",freq: 0.01,anno: {gene: "BRCA1",effect: "missense_variant",impact: "MODERATE"},samples: [{ id: "SAMPLE001", gt: "0/1" },{ id: "SAMPLE002", gt: "0/0" }]
}

注意事项:

  • 使用简短的字段名(如 chrom 而不是 chromosome)来减少存储空间

  • 将频繁一起查询的字段(如注释信息)组合到子文档中

  • 对于样本数据,只存储必要的信息

7.3 索引策略

GenomeDB使用了多层次的索引策略:

// 主索引
db.variants.createIndex({ chrom: 1, pos: 1 })
​
// 频率索引
db.variants.createIndex({ freq: 1 })
​
// 基因索引
db.variants.createIndex({ "anno.gene": 1 })
​
// 复合索引用于常见查询模式
db.variants.createIndex({ chrom: 1, pos: 1, "anno.effect": 1, freq: 1 })
​
// 文本索引用于全文搜索
db.variants.createIndex({ "anno.gene": "text", "anno.effect": "text" })

7.4 分片策略

GenomeDB采用了基于染色体的分片策略:

sh.enableSharding("genomdb")
sh.shardCollection("genomdb.variants", { chrom: 1, pos: 1 })

这确保了同一染色体的数据位于同一分片,提高了局部查询的效率。

7.5 查询优化

研究人员实现了一些高级的查询优化技术:

  1. 查询重写:将复杂查询转化为更高效的形式

  2. 结果缓存:使用Redis缓存常见查询的结果

  3. 并行查询执行:将大型查询拆分成多个子查询并行执行

例如,对于跨越多个染色体的查询:

async function parallelChromosomeQuery(query, chromosomes) {const promises = chromosomes.map(chrom => db.variants.find({ ...query, chrom: chrom }).toArray());const results = await Promise.all(promises);return results.flat();
}

7.6 数据导入优化

为了处理大规模数据导入,研究人员采用了以下策略:

  1. 批量插入:使用insertMany而不是单条插入

  2. 并行导入:按染色体分割数据,并行导入不同分片

  3. 索引预创建:在导入数据之前创建所需的索引

  4. 写入关注点优化:在导入阶段使用较低的写入关注点,提高性能

const bulkOps = [];
for (const variant of variantBatch) {bulkOps.push({ insertOne: { document: variant } });if (bulkOps.length === 1000) {await db.variants.bulkWrite(bulkOps, { ordered: false, w: 0 });bulkOps.length = 0;}
}
if (bulkOps.length > 0) {await db.variants.bulkWrite(bulkOps, { ordered: false, w: 0 });
}

7.7 性能测试结果

Wang等人的研究报告了以下性能指标:

  1. 数据导入速度:平均每秒插入50,000个变异记录

  2. 点查询响应时间:< 10ms

  3. 范围查询响应时间(1Mb区域):< 100ms

  4. 全基因组扫描:< 5分钟

这些结果表明,基于MongoDB的GenomeDB系统能够有效处理大规模基因组数据,为研究人员提供快速、灵活的数据访问能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/368045.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

防止跨站脚本攻击XSS之Antisamy

目录 一、什么是跨站脚本攻击&#xff08;XSS&#xff09; 二、通常有哪些解决方案 三、常见的XSS攻击例子有哪些 3.1 存储型XSS攻击&#xff08;黑产恶意截流&#xff0c;跳转不法网站&#xff09; 3.2反射型XSS攻击&#xff1a; 四、什么是跨站请求伪造&#xff1f; 五…

2024年上半年典型网络攻击事件汇总

文章目录 前言一、Ivanti VPN 的0 Day攻击(2024年1月)二、微软公司高管账户泄露攻击(2024年1月)三、Change Healthcare网络攻击(2024年2月)四、ConnectWise ScreenConnect漏洞利用攻击(2024年2月)五、XZ Utils软件供应链攻击(2024年3月)六、AT&T数据泄露攻击(20…

【产品经理】订单处理11-订单修改场景梳理

为了应对订单修改的场景&#xff0c;电商ERP系统应该如何设计相应模块&#xff1f; 电商ERP系统&#xff0c;经常遇到需要修改订单的情况&#xff0c;修改订单主要以下几种场景&#xff1a; 一、修改商品 修改商品&#xff0c;包括对正常商品的换货、以及对赠品的增删改。 1…

docker安装ElasticSearchKibana

本文参考以下两篇文章 ✅ElasticSearch&Kibana 部署 云效 Thoughts 企业级知识库 (aliyun.com) docker安装ElasticSearch&Kibana - 飞书 安装elasticsearch 使用docker下载es&#xff1a; docker pull elasticsearch:8.13.0 挂载配置 创建挂在文件目录 mkdir…

无人机企业需要什么资质?

无人机企业所需的资质主要可以分为几大类&#xff0c;以确保其合法、安全、高效地进行相关业务活动。以下是对这些资质的详细解释和归纳&#xff1a; 1. 基础企业资质&#xff1a; - 工商营业执照&#xff1a;这是企业合法经营的基本证书&#xff0c;所有企业都需要取得。无人…

是霍尼韦尔还是柏曼啊??书客、霍尼、柏曼三款护眼大路灯横向PK!

是霍尼韦尔还是柏曼啊&#xff1f;&#xff1f;近年来市面上的劣质护眼大路灯越来越多&#xff0c;很容易使我们选到劣质产品。为了解决这一问题&#xff0c;我自费购买了多个品牌的护眼大路灯进行测评。经过深入研究&#xff0c;我发现市面上确实存在一些光线不稳定、选材做工…

指挥中心操作台的形状及空间布局

在现代化的指挥中心&#xff0c;操作台的形状设计至关重要&#xff0c;它不仅影响着操作人员的工作效率和舒适度&#xff0c;还关系到整个指挥系统的运行效果。常见的指挥中心操作台形状多种多样&#xff0c;以满足不同的功能需求和空间布局。 直线型操作台 直线型操作台是最为…

用python画蜡笔小新

代码地址: https://pan.quark.cn/s/6ae646d2fef3

QT+OpenCV在Android上实现人脸实时检测与目标检测

一、功能介绍 在当今的移动应用领域&#xff0c;随着技术的飞速发展和智能设备的普及&#xff0c;将先进的计算机视觉技术集成到移动平台&#xff0c;特别是Android系统中&#xff0c;已成为提升用户体验、拓展应用功能的关键。其中&#xff0c;目标检测与人脸识别作为计算机视…

Panmnesia发布CXL协议 允许AI GPU以最小的延迟利用各类内存

韩国 科学技术院&#xff08;KAIST&#xff09;的一家初创公司Panmnesia推出了一种尖端 IP&#xff0c;可通过 PCIe 上的 CXL 协议为人工智能 GPU 添加外部存储器&#xff0c;从而打破了存储器容量的障碍&#xff0c;提供有效的基础设施来解决 HBM 的局限性。 目前的人工智能加…

超快的 Python 包管理工具「GitHub 热点速览」

天下武功&#xff0c;无坚不破&#xff0c;唯快不破&#xff01; 要想赢得程序员的欢心&#xff0c;工具的速度至关重要。仅需这一优势&#xff0c;即可使其在众多竞争对手中脱颖而出&#xff0c;迅速赢得开发者的偏爱。以这款号称下一代极速 Python 包管理工具——uv 为例&…

利用DeepFlow解决APISIX故障诊断中的方向偏差问题

概要&#xff1a;随着APISIX作为IT应用系统入口的普及&#xff0c;其故障定位能力的不足导致了在业务故障诊断中&#xff0c;APISIX常常成为首要的“嫌疑对象”。这不仅导致了“兴师动众”式的资源投入&#xff0c;还可能使诊断方向“背道而驰”&#xff0c;从而导致业务故障“…

网站显示不安全怎么解决

网站显示不安全通常表现为浏览器地址栏中出现“不安全”字样或红色感叹号&#xff0c;这意味着用户的个人信息、登录凭证和其他敏感数据可能面临风险。以下是一些步骤和建议&#xff1a; 1、检查URL是否以HTTPS开头&#xff1a; 确保你访问的网址是以https://开头&#xff0c;而…

go-redis源码解析:cluster模式如何选择节点

1. 如何选择节点 1.1. 确定slot 1.1.1. 通过cmdSlot方法确定在哪个槽上, 这一步只是本地计算 首先入口方法_process&#xff0c;先通过cmdSlot方法用key计算此次应该落在哪个槽上 通过crc16sum算法计算key应该属于哪个槽&#xff0c;slotNumber为16384 func Slot(key strin…

ctfshow-web入门-命令执行(web118详解)Linux 内置变量与Bash切片

输入数字和小写字母&#xff0c;回显 evil input 查看源码&#xff0c;发现这里会将提交的参数 code 传给 system 函数 使用 burpsuite 抓包进行单个字符的模糊测试 fuzz&#xff1a; 发现过滤掉了数字和小写字母以及一些符号&#xff0c;下面框起来的部分是可用的 结合题目提…

h5兼容table ,如何实现h5在app内使用h5渲染table表格而且实现横屏预览?

压图地址 横屏div 通过css 实现 transform: rotate(90deg); transformOrigin: 50vw 50vw ; height: 100vw; width: 100vh;<divclass"popup-box":style"{transform: originSet 0 ? rotate(90deg) : ,transformOrigin: originSet 0 ? 50vw 50vw : ,height…

Facebook:数字社交的引领者与创新者

自2004年诞生以来&#xff0c;Facebook从一个校园网络项目迅速成长为全球最大的社交媒体平台&#xff0c;彻底改变了我们与世界互动的方式。作为数字社交的引领者和创新者&#xff0c;Facebook不仅在技术层面上不断突破&#xff0c;也在社会和文化领域留下了深刻的印记。本文将…

如何对GD32 MCU进行加密?

GD32 MCU有哪些加密方法呢&#xff1f;大家在平时项目开发的过程中&#xff0c;最后都可能会面临如何对出厂产品的MCU代码进行加密&#xff0c;避免产品流向市场被别人读取复制。 下面为大家介绍GD32 MCU所支持的几种常用的加密方法&#xff1a; 首先GD32 MCU本身支持防硬开盖…

Flutter第十五弹 Flutter插件

目标&#xff1a; 1.Flutter插件是什么&#xff1f;有什么作用&#xff1f; 插件 (plugin) 是 package 的一种&#xff0c;全称是 plugin package&#xff0c;我们简称为 plugin&#xff0c;中文叫插件。 2.怎么创建Flutter插件&#xff1f; 一、什么是插件 在flutter中&am…

mysql逗号分割字符串“1,2,3”实现in查询

数据示例 前台单值参数实现in查询 主要函数FIND_IN_SET 该函数的作用是查询字段(strlist) 中是否包含(str)的结果&#xff0c;返回结果为 null或记录 select id,recommend_position_id from t_stk_task where FIND_IN_SET(359919,recommend_position_id)查询效果 前台集…