二重积分 - 包括计算方法和可视化

二重积分 - 包括计算方法和可视化

flyfish

计算在矩形区域 R = [ 0 , 1 ] × [ 0 , 2 ] R = [0, 1] \times [0, 2] R=[0,1]×[0,2] 下,函数 z = 8 x + 6 y z = 8x + 6y z=8x+6y 的二重积分。这相当于计算曲面 z = 8 x + 6 y z = 8x + 6y z=8x+6y 与 xy 平面之间的体积。
在这里插入图片描述

二重积分的读法

二重积分 ∫ 0 2 ∫ 0 1 ( 8 x + 6 y ) d x d y \int_0^2 \int_0^1 (8x + 6y) \, dx \, dy 0201(8x+6y)dxdy 可以读作:

在区域 y y y 从 0 到 2, x x x 从 0 到 1 的范围内,对函数 8 x + 6 y 8x + 6y 8x+6y 首先关于 x x x 进行积分,然后对结果关于 y y y 进行积分,得到在该区域下的体积。

符号含义
  • V V V: 表示体积。

  • ∫ \int : 表示积分。

  • d x dx dx: 表示关于变量 x x x 的积分。

  • d y dy dy: 表示关于变量 y y y 的积分。

  • f ( x , y ) f(x, y) f(x,y): 表示函数 8 x + 6 y 8x + 6y 8x+6y

  • [ 0 , 1 ] [0, 1] [0,1]: 表示 x x x 的积分区间。

  • [ 0 , 2 ] [0, 2] [0,2]: 表示 y y y 的积分区间。

求解步骤
  1. 二重积分表达式 :
    V = ∫ 0 2 ∫ 0 1 ( 8 x + 6 y ) d x d y V = \int_0^2 \int_0^1 (8x + 6y) \, dx \, dy V=0201(8x+6y)dxdy

  2. x x x 进行内积分 :
    ∫ 0 1 ( 8 x + 6 y ) d x \int_0^1 (8x + 6y) \, dx 01(8x+6y)dx
    首先,将 6 y 6y 6y 视为常数:
    ∫ 0 1 8 x d x + ∫ 0 1 6 y d x \int_0^1 8x \, dx + \int_0^1 6y \, dx 018xdx+016ydx
    计算 8 x 8x 8x 的积分:
    4 x 2 ∣ 0 1 = 4 ( 1 ) 2 − 4 ( 0 ) 2 = 4 4x^2 \bigg|_0^1 = 4(1)^2 - 4(0)^2 = 4 4x2 01=4(1)24(0)2=4
    计算 6 y 6y 6y 的积分(这里 y y y 是常数):
    6 y ∫ 0 1 d x = 6 y [ x ] ∣ 0 1 = 6 y ( 1 − 0 ) = 6 y 6y \int_0^1 dx = 6y [x] \bigg|_0^1 = 6y (1 - 0) = 6y 6y01dx=6y[x] 01=6y(10)=6y结合上述结果:
    ∫ 0 1 ( 8 x + 6 y ) d x = 4 + 6 y \int_0^1 (8x + 6y) \, dx = 4 + 6y 01(8x+6y)dx=4+6y

  3. y y y 进行外积分 :
    ∫ 0 2 ( 4 + 6 y ) d y \int_0^2 (4 + 6y) \, dy 02(4+6y)dy
    计算 4 4 4 的积分:
    4 y ∣ 0 2 = 4 ( 2 ) − 4 ( 0 ) = 8 4y \bigg|_0^2 = 4(2) - 4(0) = 8 4y 02=4(2)4(0)=8
    计算 6 y 6y 6y 的积分:
    3 y 2 ∣ 0 2 = 3 ( 2 ) 2 − 3 ( 0 ) 2 = 12 3y^2 \bigg|_0^2 = 3(2)^2 - 3(0)^2 = 12 3y2 02=3(2)23(0)2=12结合上述结果:
    ∫ 0 2 ( 4 + 6 y ) d y = 8 + 12 = 20 \int_0^2 (4 + 6y) \, dy = 8 + 12 = 20 02(4+6y)dy=8+12=20
    所以,计算结果 V V V 为 20。

求二重积分 使用scipy.integrate

import numpy as np
from scipy.integrate import dblquad# 定义函数 f(x, y)
def f(x, y):return 8*x + 6*y# 定义积分区间
a, b = 0, 1   # x 的积分范围
c, d = 0, 2   # y 的积分范围# 计算二重积分 V = ∫[c,d]∫[a,b] (8x + 6y) dx dy
result, error = dblquad(f, c, d, lambda y: a, lambda y: b)print(f'The volume under the plane is approximately: {result}')

求二重积分 不使用库

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 定义函数 f(x, y)
def f(x, y):return 8*x + 6*y# 手动计算内积分 ∫[0,1] (8x + 6y) dx
def inner_integral(y):return 4 + 6*y# 手动计算外积分 ∫[0,2] inner_integral(y) dy
def outer_integral():result = 0result += 4 * (2 - 0)  # ∫[0,2] 4 dyresult += 3 * (2**2 - 0**2)  # ∫[0,2] 6y dy = 6 * ∫[0,2] y dy = 6 * (1/2) * y^2return result# 计算结果
volume = outer_integral()
print(f'The volume under the plane is: {volume}')

可视化代码

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D# 定义函数 z = 8x + 6y
def f(x, y):return 8*x + 6*y# 定义网格
x = np.linspace(0, 1, 100)
y = np.linspace(0, 2, 100)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)# 绘制曲面图
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, cmap='viridis', alpha=0.8)# 绘制包围体积区域的虚线框
ax.plot([0, 0], [0, 0], [0, f(0, 0)], 'k--')
ax.plot([0, 0], [2, 2], [0, f(0, 2)], 'k--')
ax.plot([1, 1], [0, 0], [0, f(1, 0)], 'k--')
ax.plot([1, 1], [2, 2], [0, f(1, 2)], 'k--')
ax.plot([0, 0], [0, 2], [f(0, 0), f(0, 2)], 'k--')
ax.plot([1, 1], [0, 2], [f(1, 0), f(1, 2)], 'k--')
ax.plot([0, 1], [0, 0], [f(0, 0), f(1, 0)], 'k--')
ax.plot([0, 1], [2, 2], [f(0, 2), f(1, 2)], 'k--')# 设置标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('Volume under z = 8x + 6y')plt.show()

看完例子再来说二重积分

二重积分简介

二重积分是多重积分的一种,涉及两个变量的函数积分。与单变量函数的积分类似,二重积分计算曲面和xy平面之间的体积。

基本定义

f ( x , y ) f(x, y) f(x,y) 是在矩形区域 R = [ a , b ] × [ c , d ] R = [a, b] \times [c, d] R=[a,b]×[c,d] 上定义的连续函数。其二重积分记作: ∬ R f ( x , y ) d A \iint_R f(x, y) \, dA Rf(x,y)dA其中, d A dA dA 是微小的面积元素。

几何解释

对于非负函数 f ( x , y ) ≥ 0 f(x, y) \geq 0 f(x,y)0,二重积分 ∬ R f ( x , y ) d A \iint_R f(x, y) \, dA Rf(x,y)dA 表示曲面 z = f ( x , y ) z = f(x, y) z=f(x,y) 与xy平面之间的体积。

计算方法
  1. 分割区域 :将区域 R R R 分割成许多小矩形,每个小矩形的面积记为 Δ A \Delta A ΔA

  2. 求和 :计算每个小矩形上函数值 f ( x i , y j ) f(x_i, y_j) f(xi,yj) 乘以面积 Δ A \Delta A ΔA 的和。

  3. 取极限 :当小矩形的数量趋于无穷时,求和的极限即为二重积分:
    ∬ R f ( x , y ) d A = lim ⁡ Δ A → 0 ∑ i ∑ j f ( x i , y j ) Δ A \iint_R f(x, y) \, dA = \lim_{\Delta A \to 0} \sum_{i} \sum_{j} f(x_i, y_j) \Delta A Rf(x,y)dA=limΔA0ijf(xi,yj)ΔA

迭代积分

二重积分可以通过两个单重积分的迭代来计算:
∬ R f ( x , y ) d A = ∫ c d ( ∫ a b f ( x , y ) d x ) d y = ∫ a b ( ∫ c d f ( x , y ) d y ) d x \iint_R f(x, y) \, dA = \int_c^d \left( \int_a^b f(x, y) \, dx \right) dy = \int_a^b \left( \int_c^d f(x, y) \, dy \right) dx Rf(x,y)dA=cd(abf(x,y)dx)dy=ab(cdf(x,y)dy)dx

例子

求解步骤 我们以 f ( x , y ) = 8 x + 6 y f(x, y) = 8x + 6y f(x,y)=8x+6y 为例,计算在矩形区域 [ 0 , 1 ] × [ 0 , 2 ] [0, 1] \times [0, 2] [0,1]×[0,2] 下的二重积分。

二重积分表达式

V = ∫ 0 2 ∫ 0 1 ( 8 x + 6 y ) d x d y V = \int_0^2 \int_0^1 (8x + 6y) \, dx \, dy V=0201(8x+6y)dxdy

内部积分

先对 x x x 积分: ∫ 0 1 ( 8 x + 6 y ) d x = ∫ 0 1 8 x d x + ∫ 0 1 6 y d x \int_0^1 (8x + 6y) \, dx = \int_0^1 8x \, dx + \int_0^1 6y \, dx 01(8x+6y)dx=018xdx+016ydx = 4 x 2 ∣ 0 1 + 6 y [ x ] 0 1 = 4x^2 \bigg|_0^1 + 6y \left[ x \right]_0^1 =4x2 01+6y[x]01 = 4 ( 1 ) 2 − 4 ( 0 ) 2 + 6 y ( 1 − 0 ) = 4(1)^2 - 4(0)^2 + 6y(1 - 0) =4(1)24(0)2+6y(10) = 4 + 6 y = 4 + 6y =4+6y

外部积分

再对 y y y 积分: ∫ 0 2 ( 4 + 6 y ) d y = ∫ 0 2 4 d y + ∫ 0 2 6 y d y \int_0^2 (4 + 6y) \, dy = \int_0^2 4 \, dy + \int_0^2 6y \, dy 02(4+6y)dy=024dy+026ydy = 4 y ∣ 0 2 + 3 y 2 ∣ 0 2 = 4y \bigg|_0^2 + 3y^2 \bigg|_0^2 =4y 02+3y2 02 = 4 ( 2 ) − 4 ( 0 ) + 3 ( 2 ) 2 − 3 ( 0 ) 2 = 4(2) - 4(0) + 3(2)^2 - 3(0)^2 =4(2)4(0)+3(2)23(0)2 = 8 + 12 = 20 = 8 + 12 = 20 =8+12=20

二重积分符号中英读法比较

∬ R f ( x , y ) d A \iint_{R} f(x, y) \, dA Rf(x,y)dA

  1. 二重积分符号 ∬ \iint
    “double integral”。
    “二重积分”。

  2. 积分域 R R R
    “over the region R”。
    “在区域 R 上”。

  3. 被积函数 f ( x , y ) f(x, y) f(x,y)
    “the function f of x and y”。
    “函数 f 关于 x 和 y”。

  4. 微分元 d A dA dA
    “differential area element dA”。
    “微分面积元 dA”。

完整的二重积分表达式:
“double integral of f of x and y over the region R with respect to the area element dA.”
“函数 f 关于 x 和 y 在区域 R 上的二重积分,对微分面积元 dA 积分。”

如果具体到一个特定的积分表达式,例如:
∬ [ 0 , 1 ] × [ 0 , 2 ] ( 8 x + 6 y ) d x d y \iint_{[0,1] \times [0,2]} (8x + 6y) \, dx \, dy [0,1]×[0,2](8x+6y)dxdy

“double integral of 8x plus 6y over the rectangle from 0 to 1 and 0 to 2 with respect to x and y.”
“8x 加 6y 在从 0 到 1 和从 0 到 2 的矩形区域上的二重积分,对 x 和 y 积分。”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/369637.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows 11内置一键系统备份与还原 轻松替代Ghost

面对系统崩溃、恶意软件侵袭或其他不可预见因素导致的启动失败,Windows 7~Windows 11内置的系统映像功能能够迅速将您的系统恢复至健康状态,确保工作的连续性和数据的完整性。 Windows内置3种备份策略 U盘备份:便携且安全 打开“创建一个恢…

AI与测试相辅相成

AI助力软件测试 1.AI赋能软件测试 使用AI工具来帮助测试人员提高测试效率,提供缺陷分析和缺陷预测。 语法格式 设定角色 具体指示 上下文格式 例: 角色:你是一个测试人员 内容:请帮我生成登录案例的测试用例 ​ 1.只有输入正确账号和密码才…

重载一元运算符

自增运算符 #include<iostream> using namespace std; class CGirl { public:string name;int ranking;CGirl() { name "zhongge"; ranking 5; }void show() const{ cout << "name : "<<name << " , ranking : " <…

LeetCode热题100刷题3:3. 无重复字符的最长子串、438. 找到字符串中所有字母异位词、560. 和为 K 的子数组

3. 无重复字符的最长子串 滑动窗口、双指针 class Solution { public:int lengthOfLongestSubstring(string s) {//滑动窗口试一下//英文字母、数字、符号、空格,ascii 一共包含128个字符vector<int> pos(128,-1);int ans 0;for(int i0,j0 ; i<s.size();i) {//s[i]…

uniapp启动页面鉴权页面闪烁问题

在使用uni-app开发app 打包完成后如果没有token&#xff0c;那么就在onLaunch生命周期里面判断用户是否登录并跳转至登录页。 但是在app中页面会先进入首页然后再跳转至登录页&#xff0c;十分影响体验。 处理方法&#xff1a; 使用plus.navigator.closeSplashscreen() 官网…

CSF视频文件格式转换WMV格式(2024年可用)

如果大家看过一些高校教学讲解视频的话&#xff0c;很可能见过这样一个难得的格式&#xff0c;".csf "&#xff0c;非常漂亮 。 用暴风影音都可以打开观看&#xff0c;会自动下载解码。 但是一旦我们想要利用或者上传视频的时候就麻烦了&#xff0c;一般网站不认这…

Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO

官网&#xff1a;https://streamlit.io/ github&#xff1a;https://github.com/streamlit/streamlit API 参考&#xff1a;https://docs.streamlit.io/library/api-reference 最全 Streamlit 教程&#xff1a;https://juejin.cn/column/7265946243196436520 Streamlit-中文文档…

Python脚本:将Word文档转换为Excel文件

引言 在文档处理中&#xff0c;我们经常需要将Word文档中的内容转换成其他格式&#xff0c;如Excel&#xff0c;以便更好地进行数据分析和报告。针对这一需求&#xff0c;我编写了一个Python脚本&#xff0c;能够批量处理指定目录下的Word文档&#xff0c;将其内容结构化并转换…

船舶雷达与导航系统选择7/8防水插座的原因分析

概述 船舶雷达与导航系统在现代航海中扮演着至关重要的角色&#xff0c;它们为船舶提供准确的导航信息&#xff0c;确保航行的安全和效率。在这些系统中&#xff0c;7/8防水插座的使用尤为重要&#xff0c;因为它们能够在恶劣的海上环境中提供稳定的电力和信号连接。接下来&am…

vue2(vue-cli3x[vue.config.js])使用cesium新版(1.117.0)配置过程

看来很多解决方法都没有办法&#xff0c;最后终于。呜呜呜呜 这里我用的是vue-cli去搭建的项目的vue2 项目&#xff0c;其实不建议用vue2搭配cesium。因为目前cesium停止了对vue2的版本更新&#xff0c;现在默认安装都是vue3版本&#xff0c;因此需要控制版本&#xff0c;否则…

初试成绩占比百分之70!计算机专硕均分340+!华中师范大学计算机考研考情分析!

华中师范大学&#xff08;Central China Normal University&#xff09;简称“华中师大”或“华大”&#xff0c;位于湖北省会武汉&#xff0c;是中华人民共和国教育部直属重点综合性师范大学&#xff0c;国家“211工程”、“985工程优势学科创新平台”重点建设院校&#xff0c…

ServiceImpl中的参数封装为Map到Mapper.java中查询

ServiceImpl中的参数封装为Map到Mapper.java中查询&#xff0c;可以直接从map中获取到key对应的value

HiAI Foundation开发平台,加速端侧AI应用的智能革命

如果您是一名开发者&#xff0c;正在寻找一种高效、灵活且易于使用的端侧AI开发框架&#xff0c;那么HarmonyOS SDKHiAI Foundation服务&#xff08;HiAI Foundation Kit&#xff09;就是您的理想选择。 作为一款AI开发框架&#xff0c;HiAI Foundation不仅提供强大的NPU计算能…

基于jeecgboot-vue3的Flowable流程-集成仿钉钉流程(二)增加基本的发起人审批与多用户多实例

因为这个项目license问题无法开源&#xff0c;更多技术支持与服务请加入我的知识星球。 1、AssigneeNode 增加approvalText public abstract class AssigneeNode extends Node {// 审批对象private AssigneeTypeEnum assigneeType;// 表单内人员private String formUser;// 表…

5款文案自动生成器,快速创作高质量文案

随着科技的发展&#xff0c;市面上出现了许多文案自动生成器&#xff0c;为我们的创作过程提供了极大的便利。无论是为了社交媒体内容创作&#xff0c;还是产品的文案的宣传&#xff0c;文案自动生成器就能为我们快速且高效地生成高质量的文案。以下将为大家分享5款备受赞誉的文…

Redis和PHP的Bitmap于二进制串的相互转换

Redis和PHP的Bitmap于二进制串的相互转换 场景 错题集的存储&#xff0c;需要有正确的题号id集合&#xff0c;错误的题号id集合&#xff0c;两者并集后在全量题的集合中取反就是未答题号id 选型 基于场景的数据结构设计&#xff0c;有试过列表等&#xff0c;测试结果&#xff1…

Oracle EBS PO采购订单预审批状态处理

系统版本 RDBMS : 12.1.0.2.0 Oracle Applications : 12.2.6 问题症状: 采购订单状态:预审批 采购订单流程报错如下: po.plsql.PO_DOCUMENT_ACTION_AUTH.approve:90:archive_po not successful - po.plsql.PO_DOCUMENT_ACTION_PVT.do_action:110:unexpected error in acti…

【最详细】PhotoScan(MetaShape)全流程教程

愿天下心诚士子&#xff0c;人人会PhotoScan&#xff01; 愿天下惊艳后辈&#xff0c;人人可剑开天门&#xff01; 本教程由CSDN用户CV_X.Wang撰写&#xff0c;所用数据均来自山东科技大学视觉测量研究团队&#xff0c;特此鸣谢&#xff01;盗版必究&#xff01; 一、引子 Ph…

MySQL高级-MVCC- readview介绍

文章目录 1、介绍2、ReadView中包含了四个核心字段&#xff1a;3、版本链数据的访问规则&#xff1a;4、不同的隔离级别&#xff0c;生成ReadView的时机不同&#xff1a; 1、介绍 ReadView&#xff08;读视图&#xff09;是 快照读 SQL执行时MVCC提取数据的依据&#xff0c;记录…

Vue 常用指令详细介绍

Vue 常用指令 1.Vue 常用指令介绍 内容讲解 【1】Vue 指令介绍 在vue中指令是作用在视图中的即html标签&#xff0c;可以在视图中增加一些指令来设置html标签的某些属性和文本。 指令都是以带有 v- 前缀的特殊属性。 【2】使用Vue指令 使用指令时&#xff0c;通常编写在…