三相感应电机的建模仿真(2)基于ABC相坐标系S-Fun的仿真模型

1. 概述

2. 三相感应电动机状态方程式

3. 基于S-Function的仿真模型建立

4. 瞬态分析实例

5. 总结

6. 参考文献

1. 概述

       前面建立的三相感应电机在ABC相坐标系下的数学模型是一组周期性变系数微分方程(其电感矩阵是转子位置角的函数,转子位置角随时间按正弦规律变化),依目前的数值计算和计算机水平求解这组方程已完全没有问题。自然坐标系下的三相感应电机数学模型,将其用于电机控制系统的设计和控制策略的分析定制也许不太合适,有点勉为其难。而将其用于理解电机的基本物理原理和数学特性,设计更高效的电机和优化算法;对分析三相感应电机的启动、运行和制动等状态,深入理解电机的工作原理和学生工程师的教育培训;提供电机的故障诊断和分析的详细信息;用于电机与机械系统的耦合分析等也许是非常合适的。

       电机的数学模型具有多样性,而根据数学模型建立的仿真模型更具多样性 ,因为同一个数学模型可以建立起对应的多个仿真模型。本文将根据前面所建立的三相感应电机在ABC相坐标系下的数学模型,用Matlab的动态分析工具Simulink建立基于S函数的仿真模型,这个仿真模型只对磁链方程和电磁转矩方程建立S函数,而电压方程和机械运动方程仍然用Simulink的基本功能模块建立,这样更方便对三相感应电机的某些运行状态或动态行为进行仿真。用建立的仿真模型对三相感应电动机在三相对称电源下直接起动和在不对称三相电源下直接起动的起动过程进行仿真分析。

2. 三相感应电动机相坐标系下的状态方程式

       为阅读方便,将前面建立的三相感应电动机在ABC相坐标系下的状态方程式罗列如下:

\mathbf{u}=\mathbf{Ri}+\mathbf{L}\frac{d\mathbf{i}}{dt}+\omega_r\frac{\partial\mathbf{L}}{\partial\theta}\mathbf{i}\\\frac12n_p\mathbf{i}^T\frac{\partial\mathbf{L}}{\partial\theta}\mathbf{i}=T_L+\frac J{n_p}\frac{d\omega_r}{dt}\\\omega_r=\frac{d\theta}{dt}    (1)

(1)式中,

\mathbf{u}=\begin{bmatrix}u_A&u_B&u_C&u_a&u_b&u_c\end{bmatrix}^T; R=diag(R_s\quad R_s\quad R_s\quad R_\mathrm{r}\quad R_r\quad R_r)

\mathbf{i}=\begin{bmatrix}\dot{\boldsymbol{\iota}}_{A}&\dot{\boldsymbol{\iota}}_{B}&\dot{\boldsymbol{\iota}}_{C}&\dot{\boldsymbol{\iota}}_{a}&\dot{\boldsymbol{\iota}}_{b}&\dot{\boldsymbol{\iota}}_{c}\end{bmatrix}^{T}

\begin{gathered}L=\begin{bmatrix}M_{ss}+L_{sl} & -M_{ss}/2 & -M_{ss}/2 & M_{sr}\cos\theta_1 & M_{sr}\cos\theta_3 & M_{sr}\cos\theta_2\\ -M_{ss}/2 & M_{ss}+L_{sl} & -M_{ss}/2 & M_{sr}\cos\theta_2 & M_{sr}\cos\theta_1 & M_{sr}\cos\theta_3\\ -M_{ss}/2 & -M_{ss}/2 & M_{ss}+L_{sl} & M_{sr}\cos\theta_3 & M_{sr}\cos\theta_2 & M_{sr}\cos\theta_1\\ M_{sr}\cos\theta_1 & M_{sr}\cos\theta_2 & M_{sr}\cos\theta_3 & M_{rr}+L_{rl} & -M_{rr}/2 & -M_{rr}/2\\ M_{sr}\cos\theta_3 & M_{sr}\cos\theta_1 & M_{sr}\cos\theta_2 & -M_{rr}/2 & M_{rr}+L_{rl} & -M_{rr}/2\\ M_{sr}\cos\theta_2 & M_{sr}\cos\theta_3 & M_{sr}\cos\theta_1 & -M_{rr}/2 & -M_{rr}/2 & M_{rr}+L_{rl}\end{bmatrix}\end{gathered}

M_{ss}:定子绕组互感;M_{rr}:转子绕组互感;L_{ls}:定子绕组漏感;

L_{lr}:折算到定子绕组的转子绕组漏电感;M_{sr}:定转子绕组间的互感;

\theta_1=\theta\text{,}\theta_2=\theta-2\pi/3\text{,}\theta_3=\theta+2\pi/3\theta:定子A相绕组与转子a相绕组之间的夹角。

也可以将式(1)中的电压方程式写成以下矩阵形式:

\begin{bmatrix}\mathbf{u}_s\\\mathbf{u}_r\end{bmatrix}=\begin{bmatrix}\mathbf{R}_s&\mathbf{0}\\\mathbf{0}&\mathbf{R}_r\end{bmatrix}\begin{bmatrix}\mathbf{i}_s\\\mathbf{i}_r\end{bmatrix}+p\begin{bmatrix}\mathbf{L}_s&\mathbf{M}_{sr}\\\mathbf{M}_{rs}&\mathbf{L}_r\end{bmatrix}\begin{bmatrix}\mathbf{i}_s\\\mathbf{i}_r\end{bmatrix}    (2)

方程(2)中,

\mathbf{u}_s=\begin{bmatrix}u_A&u_B&u_C\end{bmatrix}^T;\quad\mathbf{u}_r=\begin{bmatrix}u_a&u_b&u_c\end{bmatrix}^T;

\mathbf{R}_s=diag(R_s\quad R_s\quad R_s); \mathbf{R}_r=diag(R_r\quad R_r\quad R_r);

\mathbf{i}_s=\begin{bmatrix}i_A&i_B&i_C\end{bmatrix}^T;\quad\mathbf{i}_r=\begin{bmatrix}i_a&i_b&i_c\end{bmatrix}^T;

设定、转子零序电流等于零,即设i_A+i_B+i_C=0   i_a+i_b+i_c=0,则有

\mathbf{L}_s=diag(L_s\quad L_s\quad L_s)\mathbf{L}_{r}=diag(L_{r}\quad L_{r}\quad L_{r})

L_s=L_{ss}+L_{sm}/2;\quad L_r=L_{rr}+L_{sm}/2

\mathbf{M}_{sr}=M_{sr}\begin{bmatrix}\cos\theta & \cos(\theta+2\pi/3) & \cos(\theta-2\pi/3)\\ \cos(\theta-2\pi/3) & \cos\theta & \cos(\theta+2\pi/3)\\ \cos(\theta+2\pi/3) & \cos(\theta-2\pi/3) & \cos\theta\end{bmatrix}

\mathbf{M}_{rs}=\mathbf{M}_{sr}^T

T_e=n_pi^T\frac{\partial L}{\partial\theta}i    (3)

3. 基于S-Function的仿真模型

       根据以上数学模型,用Simulink建立的ABC相坐标系下的三相感应电动机仿真模型如图1和图2所示,其中,左边图形为最后的封装形式,它由三个子系统所组成,如右边图形所示。图1中的子系统1表示的是定转子电压方程,子系统2是用S函数表示的磁链方程和电磁转矩方程,S函数取名为flux_torque,如图2所示,子系统3表示的是进行运动方程。这个仿真模型可以作为通用的仿真模型使用,可以用于为了三相感应电动机电源电压不对称、定转子绕组回路串电阻或电抗、起动、调速以及绕组开路故障等的动态行为的仿真分析。如果要考虑主磁路饱和因素,可以在S函数中加以补充。如果要对三相感应电机的定子绕组故障(一相开路,两相短路等)、定子绕组回路串电阻(电抗)起动以及转子绕组回路串电阻起动等可以在子系统1中进行修改来达到仿真的目的。如果要对转子的转动惯量对电机运行性能的影响进行仿真分析,可以修改子系统3来进行。S函数的程序代码如下:

图1. 三相感应电动机ABC相坐标数学模型

图2. 图1中子系统2的S-Fun(磁链和电磁转矩方程)模块

% This S function corresponds to the ABC phase coordinate 
% mathematical model of a three-phase induction motorfunction [sys,x0,str,ts,simStateCompliance] =flux_torque(t,x,u,flag,Lsl,Lrl,Lm,np)
%==========================================================================
switch flagcase 0[sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;case 1sys=mdlDerivatives(t,x,u);case 2sys=mdlUpdate(t,x,u);case 3sys=mdlOutputs(t,x,u,Lsl,Lrl,Lm,np);case 4sys=mdlGetTimeOfNextVarHit(t,x,u);case 9sys=mdlTerminate(t,x,u);otherwiseDAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
end
%==========================================================================
function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates  = 0;
sizes.NumDiscStates  = 0;
sizes.NumOutputs     = 7;
sizes.NumInputs      = 7;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;   % at least one sample time is needed
sys = simsizes(sizes);
x0  = zeros(0,0);
str = [];
ts  = [0 0];
simStateCompliance = 'UnknownSimState';
%==========================================================================
function sys=mdlDerivatives(t,x,u)
sys  = [];%==========================================================================
function sys=mdlUpdate(t,x,u)
sys = [];
%==========================================================================
function sys=mdlOutputs(t,x,u,Lsl,Lrl,Lm,np)
% Write inductance matrix for magnetic flux equation
ang=2/3*pi;
Lml=2/3*Lm;
Ls=Lsl+Lml;
Lr=Lrl+Lml;% Stator inductance matrix
Lss=[Ls -Lml/2 -Lml/2;-Lml/2  Ls -Lml/2;-Lml/2 -Lml/2  Ls];% Rotor inductance matrix
Lrr=[Lr -Lml/2 -Lml/2;-Lml/2  Lr -Lml/2;-Lml/2 -Lml/2  Lr];% Matrix of mutual inductance between stator and rotor
Lsr=Lml*[cos(u(1)),cos(u(1)+ang),cos(u(1)-ang);cos(u(1)-ang),cos(u(1)),cos(u(1)+ang);cos(u(1)+ang),cos(u(1)-ang),cos(u(1))];% Total inductance matrix
L=[Lss Lsr; Lsr' Lrr];%The derivative of the total inductance matrix with respect to the rotor position angle
dLsrdtheta=Lml*[-sin(u(1)), -sin(u(1)+ang),-sin(u(1)-ang);-sin(u(1)-ang),-sin(u(1)), -sin(u(1)+ang);-sin(u(1)+ang),-sin(u(1)-ang),-sin(u(1))];dLdtheta =[zeros(3,3) dLsrdtheta;dLsrdtheta' zeros(3,3)];% Current state variable
Psi=[u(2);u(3);u(4);u(5);u(6);u(7)];
I=L\(Psi);% Electromagnetic torque
Te=I'*dLdtheta*I*np;
sys=[I(1);I(2);I(3);I(4);I(5);I(6);Te];%==========================================================================
function sys=mdlGetTimeOfNextVarHit(t,x,u)
sampleTime = 1;    %  Example, set the next hit to be one second later.
sys = t + sampleTime;
%==========================================================================
function sys=mdlTerminate(t,x,u)
sys = [];
% end mdlTerminate

4. 瞬态分析实例

       仿真计算用的电机参数如下:额定电压Un=220v,额定频率fn=50Hz,极对数np=2,转动惯量J=0.01,摩擦阻尼系数Bm=0.0006,定子电阻Rs=6.033欧,定子电感Lss=0.29614H,转子电阻Rr=4.467欧,转子电感Lrr=0.29614H,定子绕组互感Ms=0.1363H,转子绕组互感Mr=0.1363H,定转子绕组互感Msr=0.2726H;负载转矩TL=7.5N.m。

4.1 对称电源直接起动

      在三相额定对称电压下带恒转矩负载TL=7.5N.m直接起动,起动过程的仿真结果图3所示。

设Y接三相对称电源电压为

u_{A}=220\sqrt{2}\sin(\omega t)\nu\\u_{B}=220\sqrt{2}\sin(\omega t-120^{\circ})\nu\\u_{C}=220\sqrt{2}\sin(\omega t+120^{\circ})\nu

图3. 三相感应电动机在三相对称电源电压下直接起动时的定子电流特性

图4. 三相感应电动机三相对称电源电压下直接起动时的电磁转矩和转速特性

       从图3和图4的仿真结果来看,三相对称定子绕组感应电动机在三相对称电源下起动并稳定运行,起动电流倍数约为5.56,定子稳态电流幅值为3.6A,三相定子电流平衡。电机稳定运行时,电磁转矩无脉振现象,转速为1467r/min。

4.2 非对称电源直接起动

       三相感应电动机在不对称电源电压下运行是实际中经常遇到的一个问题,因为当电网中有较大的单相负载(如电炉﹑电焊机等),或者电网中发生暂时性短路故障(两相短路﹑一相接地等),或电网一相断开等都将引起电网三相电压不平衡。

     在电动机带恒转矩负载TL=7.5N.m,定子绕组端直接施加三相不对称电压:

u_{A}=176\sqrt{2}\sin(\omega t)\nu\\u_{B}=220\sqrt{2}\sin(\omega t-120^{\circ})\nu\\u_{C}=220\sqrt{2}\sin(\omega t+120^{\circ})\nu

直接起动时的仿真结果如图5和图6所示。

图5. 三相感应电动机在非对称三相电源电压下直接起动时的定子电流特性

图6. 三相感应电动机在非对称三相电源电压下直接起动时的转矩和转速特性

       从图5和图6的仿真结果可见,三相对称定子绕组感应电动机在三相不对称电源下起动并稳定运行,起动时定子各相的冲击电流(起动过程中的最大电流幅值)与图3的定子电流相比较相差不大,但稳态时电机三相定子电流不平衡,A相电流幅值大为减小(约为0.5A),而另外两相电流幅值都有所增加(约为4.5A)。这种三相定子电流不平衡的程度会随三相电源电压的不平衡程度的增加而增加。电机稳定运行时,电磁转矩波形有明显的二倍频脉振现象,转速也有明显的波动(振动)。起动过程有所延长,稳定转速的数值也略有降低。

       从上面的结果可以对称结论:三相电源电压不对称时,电动机的平均起动转矩较小,转速的过渡过程较长,电机的过载能力降低(转矩最大值有所减小);由于电流的波动加剧,使转矩的脉振程度增加,这将会加大电机的电磁噪声和机械振动。用瞬时对称分量法来分析,可知三相感应电动机在电源电压不对称情况下运行时的各不利因素,都是由于负序磁场分量造成的(负序磁场分量的存在还会增加电机的铁耗)。不对称程度增大时,负序磁场分量值变大,上述不利情形将会更为严重。因此,三相异步电动机一般不容许在较严重不对称电源电压下运行,否则必须相应地降低电动机的容量。

       对三相感应电动机在电源电压不对称情况下运行的瞬态和稳态过程进行仿真,仿真的结果可以作为电机以及系统控制﹑调节﹑保护装置设计的直接理论依据,对完善电机及其系统的运行性能有实际意义。

5. 总结

       本文根据三相感应电机在ABC相坐标系下的数学模型建立了基于S函数的仿真模型,然后应用这个仿真模型对 三相感应电动机在三相对称电源和不对称电源两种情况下的直接起动过程进行了仿真分析。得出了有用的分析结论。 

6. 参考文献

(1)黄守道,邓建国,罗德荣. 电机瞬态过程分析德Matlab建模仿真 北京 电子工业出版社,2013

(2)汤蕴璆等 交流电机动态分析. 北京 机械工业出版社 2004

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/370552.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu22 sshd设置

专栏总目录 一、安装sshd服务 sudo apt updatesudo apt install -y openssh-server 二、配置sshd 使用文本编辑器打开/etc/ssh/sshd_config sudo vi /etc/ssh/sshd_config (一)配置sshd服务的侦听端口 建议将ssh的侦听端口改为7000以上的端口&#…

安装 tesseract

安装 tesseract 1. Ubuntu-24.04 安装 tesseract2. Ubuntu-24.04 安装支持语言3. Windows 安装 tesseract4. Oracle Linux 8 安装 tesseract 1. Ubuntu-24.04 安装 tesseract sudo apt install tesseract-ocr sudo apt install libtesseract-devreference: https://tesseract-…

Android- Framework 非Root权限实现修改hosts

一、背景 修改system/etc/hosts,需要具备root权限,而且remount后,才能修改,本文介绍非root状态下修改system/etc/hosts方案。 环境:高通 Android 13 二、方案 非root,system/etc/hosts只有只读权限&…

【分布式系统】ELK 企业级日志分析系统

目录 一.ELK概述 1.简介 1.1.可以添加的其他组件 1.2.filebeat 结合 logstash 带来好处 2.为什么使用ELK 3.完整日志系统基本特征 4.工作原理 二.部署ELK日志分析系统 1.初始化环境 2.完成JAVA部署 三. ELK Elasticsearch 集群部署 1.安装 2.修改配置文件 3.es 性…

Linux运维之管道符、重定向与环境变量

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 目录 一、输入输出重定向 二、管道命令符 三、命令行的通配符 四、常用的转义字符 五、重要的环境变量 致谢 一、输入输出重定向 输入重定向是…

《昇思25天学习打卡营第13天|onereal》

今天学习的内容如下: DCGN生成漫画头像 在下面的教程中,我们将通过示例代码说明DCGAN网络如何设置网络、优化器、如何计算损失函数以及如何初始化模型权重。在本教程中,使用的动漫头像数据集共有70,171张动漫头像图片,图片大小均为…

进程控制-exec函数

让父子进程来执行不相干的操作 能够替换进程地址空间的代码.text段 执行另外的程序,不需要创建额外的的地址空间 当前程序中调用另外一个应用程序 指定执行目录下的程序 int execl(const char *path, const char *arg,/* (char *) NULL */); /* pat…

[学习笔记]SQL学习笔记(连载中。。。)

学习视频:【数据库】SQL 3小时快速入门 #数据库教程 #SQL教程 #MySQL教程 #database#Python连接数据库 目录 1.SQL的基础知识1.1.表(table)和键(key)1.2.外键、联合主键 2.MySQL安装(略,请自行参考视频)3.基本的MySQL语法3.1.规…

2024年最新运维面试题(附答案)

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 公众号:网络豆云计算学堂 座右铭:低头赶路,敬事如仪 个人主页: 网络豆的主页​​​​​ 一.选择题 1.HTTP协议默认使用哪个端口…

html的作业

目录 作业题目 1.用户注册 A图 B代码 2.工商银行电子汇款单 A图 B代码 3.李白诗词 A图 B代码 4.豆瓣电影 A图 B代码 学习产出&#xff1a; 作业题目 1.用户注册 A图 B代码 <!DOCTYPE html> <html lang"zh"> <head><meta charset&qu…

均匀采样信号的鲁棒Savistky-Golay滤波(MATLAB)

S-G滤波器又称S-G卷积平滑器&#xff0c;它是一种特殊的低通滤波器&#xff0c;用来平滑噪声数据。该滤波器被广泛地运用于信号去噪&#xff0c;采用在时域内基于多项式最小二乘法及窗口移动实现最佳拟合的方法。与通常的滤波器要经过时域&#xff0d;频域&#xff0d;时域变换…

进程的初步认识

目录 一、硬件方面介绍 1.冯诺依曼体系结构 2.存储分级 二、软件 方面 1.操作系统是一款进行管理的软件&#xff0c;它可以管理硬件也可以管理软件 2.操作系统如何管理&#xff1f; 三、进程 1.概念 总结 四、linux中对进程的管理 1.task_ struct内容分类 2.查看进…

解决Linux环境Qt报“cannot find -lgl“问题

今天&#xff0c;在Ubuntu 18.04.6环境下&#xff0c;安装Qt5.14.2之后&#xff0c;运行一个QWidget工程&#xff0c;发现Qt报"cannot find -lgl"错误。     出现这种现象的原因&#xff1a;Qt的Path路径没有配置&#xff0c;缺少libqt4-dev依赖包和一些必要的组件…

Redis基础教程(九):redis有序集合

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; &#x1f49d;&#x1f49…

从“钓”到“管”:EasyCVR一体化视频解决方案助力水域安全管理

一、背景 随着城市化进程的加快&#xff0c;越来越多的市民热衷于钓鱼活动。钓鱼活动在带来乐趣的同时&#xff0c;也伴随着一定的安全隐患。尤其是在一些危险水域&#xff0c;也经常出现垂钓者的身影&#xff0c;非法垂钓&#xff0c;这给城市管理带来了不小的阻力。传统的人…

如何处理 PostgreSQL 中由于表连接顺序不当导致的性能问题?

文章目录 一、理解表连接和连接顺序二、识别由于表连接顺序不当导致的性能问题三、影响表连接顺序的因素四、解决方案手动调整连接顺序创建合适的索引分析数据分布和优化查询逻辑 五、示例分析手动调整连接顺序创建索引优化查询逻辑 六、总结 在 PostgreSQL 中&#xff0c;表连…

【Docker安装】OpenEuler系统下部署Docker环境

【Docker安装】OpenEuler系统下部署Docker环境 前言一、本次实践介绍1.1 本次实践规划1.2 本次实践简介二、检查本地环境2.1 检查操作系统版本2.2 检查内核版本2.3 检查yum仓库三、卸载Docker四、部署Docker环境4.1 配置yum仓库4.2 检查可用yum仓库4.3 安装Docker4.4 检查Docke…

绝区贰--及时优化降低 LLM 成本和延迟

前言 大型语言模型 (LLM) 为各行各业带来了变革性功能&#xff0c;让用户能够利用尖端的自然语言处理技术处理各种应用。然而&#xff0c;这些强大的 AI 系统的便利性是有代价的 — 确实如此。随着 LLM 变得越来越普及&#xff0c;其计算成本和延迟可能会迅速增加&#xff0c;…

Linux配置固定ip地址

虚拟机的Linux操作系统&#xff0c;其IP地址是通过DHCP服务获取的 DHCP&#xff1a;动态获取IP地址&#xff0c;即每次重启设备后都会获取一次&#xff0c;可能导致IP地址频繁变更。 一般系统默认的ip地址设置都是自动获取&#xff0c;故每次系统重启后ip地址都可能会不一样&a…

Redis的使用(二)redis的命令总结

1.概述 这一小节&#xff0c;我们主要来研究一下redis的五大类型的基本使用&#xff0c;数据类型如下&#xff1a; redis我们接下来看一看这八种类型的基本使用。我们可以在redis的官网查询这些命令:Commands | Docs,同时我们也可以用help 数据类型查看命令的帮助文档。 2. 常…