JCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断

JJCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断

目录

    • JJCR一区 | Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
      • 分类效果
        • 格拉姆矩阵图
        • GAF-PCNN-MATT
        • GASF-CNN
        • GADF-CNN
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

格拉姆矩阵图

在这里插入图片描述

GAF-PCNN-MATT

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

GASF-CNN

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

GADF-CNN

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断,三个模型对比,运行环境matlab2023b;PCNN-MATT为并行卷积神经网络融合多头注意力机制。

2.先运行格拉姆矩阵变换进行数据转换,然后运行分别GAF_PCNN-MATT.m,GADF_CNN.m,GASF_CNN.m完成多特征输入数据分类预测/故障诊断;

GADF_CNN.m,是只用到了格拉姆矩阵的GADF矩阵,将GADF矩阵送入CNN进行故障诊断。

GASF_CNN-MATT.m,是只用到了格拉姆矩阵的GASF矩阵,将GASF矩阵送入CNN进行故障诊断。

GAF_PCNN-MATT.m,是将GASF 图与GADF 图同时送入两条并行CNN-MATT中,经过卷积-池化后,两条CNN-MATT网络各输出一组一维向量;然后,将所输出两组一维向量进行拼接融合;通过全连接层后,最终将融合特征送入到Softmax 分类器中。

参考文献

在这里插入图片描述
在这里插入图片描述

  • PCNN-MATT结构

  • 在这里插入图片描述

  • CNN结构
    在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现GAF-PCNN-MATT、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断
fullyConnectedLayer(classnum,'Name','fc12')softmaxLayer('Name','softmax')classificationLayer('Name','classOutput')];lgraph = layerGraph(layers1);layers2 = [imageInputLayer([size(input2,1) size(input2,2)],'Name','vinput')  flattenLayer(Name='flatten2')bilstmLayer(15,'Outputmode','last','name','bilstm') dropoutLayer(0.1)        % Dropout层,以概率为0.2丢弃输入reluLayer('Name','relu_2')selfAttentionLayer(2,2,"Name","mutilhead-attention")   %Attention机制fullyConnectedLayer(10,'Name','fc21')];
lgraph = addLayers(lgraph,layers2);
lgraph = connectLayers(lgraph,'fc21','add/in2');plot(lgraph)%% Set the hyper parameters for unet training
options = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', 1000, ...                            % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', 0.001, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod',700, ...                   % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ...                    % 学习率调整因子'L2Regularization', 0.001, ...         % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 1, ...                                 % 关闭优化过程'Plots', 'none');                    % 画出曲线
%Code introduction
if nargin<2error('You have to supply all required input paremeters, which are ActualLabel, PredictedLabel')
end
if nargin < 3isPlot = true;
end%plotting the widest polygon
A1=1;
A2=1;
A3=1;
A4=1;
A5=1;
A6=1;a=[-A1 -A2/2 A3/2 A4 A5/2 -A6/2 -A1];
b=[0 -(A2*sqrt(3))/2 -(A3*sqrt(3))/2 0 (A5*sqrt(3))/2 (A6*sqrt(3))/2 0];if isPlotfigure   plot(a, b, '--bo','LineWidth',1.3)axis([-1.5 1.5 -1.5 1.5]);set(gca,'FontName','Times New Roman','FontSize',12);hold on%grid
end% Calculating the True positive (TP), False Negative (FN), False Positive...
% (FP),True Negative (TN), Classification Accuracy (CA), Sensitivity (SE), Specificity (SP),...
% Kappa (K) and F  measure (F_M) metrics
PositiveClass=max(ActualLabel);
NegativeClass=min(ActualLabel);
cp=classperf(ActualLabel,PredictedLabel,'Positive',PositiveClass,'Negative',NegativeClass);CM=cp.DiagnosticTable;TP=CM(1,1);FN=CM(2,1);FP=CM(1,2);TN=CM(2,2);CA=cp.CorrectRate;SE=cp.Sensitivity; %TP/(TP+FN)SP=cp.Specificity; %TN/(TN+FP)Pr=TP/(TP+FP);Re=TP/(TP+FN);F_M=2*Pr*Re/(Pr+Re);FPR=FP/(TN+FP);TPR=TP/(TP+FN);K=TP/(TP+FP+FN);[X1,Y1,T1,AUC] = perfcurve(ActualLabel,PredictedLabel,PositiveClass); %ActualLabel(1) means that the first class is assigned as positive class%plotting the calculated CA, SE, SP, AUC, K and F_M on polygon
x=[-CA -SE/2 SP/2 AUC K/2 -F_M/2 -CA];
y=[0 -(SE*sqrt(3))/2 -(SP*sqrt(3))/2 0 (K*sqrt(3))/2 (F_M*sqrt(3))/2 0];if isPlotplot(x, y, '-ko','LineWidth',1)set(gca,'FontName','Times New Roman','FontSize',12);
%     shadowFill(x,y,pi/4,80)fill(x, y,[0.8706 0.9216 0.9804])
end%calculating the PAM value
% Get the number of vertices
n = length(x);
% Initialize the area
p_area = 0;
% Apply the formula
for i = 1 : n-1p_area = p_area + (x(i) + x(i+1)) * (y(i) - y(i+1));
end
p_area = abs(p_area)/2;%Normalization of the polygon area to one.
PA=p_area/2.59807;if isPlot%Plotting the Polygonplot(0,0,'r+')plot([0 -A1],[0 0] ,'--ko')text(-A1-0.3, 0,'CA','FontWeight','bold','FontName','Times New Roman')plot([0 -A2/2],[0 -(A2*sqrt(3))/2] ,'--ko')text(-0.59,-1.05,'SE','FontWeight','bold','FontName','Times New Roman')plot([0 A3/2],[0 -(A3*sqrt(3))/2] ,'--ko')text(0.5, -1.05,'SP','FontWeight','bold','FontName','Times New Roman')plot([0 A4],[0 0] ,'--ko')text(A4+0.08, 0,'AUC','FontWeight','bold','FontName','Times New Roman')plot([0 A5/2],[0 (A5*sqrt(3))/2] ,'--ko')text(0.5, 1.05,'J','FontWeight','bold','FontName','Times New Roman')daspect([1 1 1])
end
Metrics.PA=PA;
Metrics.CA=CA;
Metrics.SE=SE;
Metrics.SP=SP;
Metrics.AUC=AUC;
Metrics.K=K;
Metrics.F_M=F_M;printVar(:,1)=categories;
printVar(:,2)={PA, CA, SE, SP, AUC, K, F_M};
disp('预测结果打印:')
for i=1:length(categories)fprintf('%23s: %.2f \n', printVar{i,1}, printVar{i,2})
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/371598.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

npm 淘宝镜像证书过期,错误信息 Could not retrieve https://npm.taobao.org/mirrors/node/latest

更换 npm 证书 问题描述报错原因更换步骤1 找到 nvm 安装目录2 发现证书过期3 更换新地址4 保存后&#xff0c;重新安装成功 问题描述 在使用 nvm 安装新版本时&#xff0c;未成功&#xff0c;出现报错&#xff1a; Could not retrieve https://npm.taobao.org/mirrors/node/l…

Python酷库之旅-第三方库Pandas(009)

目录 一、用法精讲 19、pandas.read_xml函数 19-1、语法 19-2、参数 19-3、功能 19-4、返回值 19-5、说明 19-6、用法 19-6-1、数据准备 19-6-2、代码示例 19-6-3、结果输出 20、pandas.DataFrame.to_xml函数 20-1、语法 20-2、参数 20-3、功能 20-4、返回值 …

AI Earth ——开发者模式案例10:基于 CNN 的 AI 分类模型开发

基于 CNN 的 AI 分类模型开发 本案例主要介绍如何快速利用 AIE Python SDK 创建机器学习建模流程。我们主要使用到 Python SDK的Machine Learning Proxy 模块(下文简称 AieMlProxy )。该模块涵盖了一系列用户与训练集群之间的交互接口,包括:鉴权、数据加载、训练任务提交、…

Shell Expect自动化交互(示例)

Shell Expect自动化交互 日常linux运维时&#xff0c;经常需要远程登录到服务器&#xff0c;登录过程中需要交互的过程&#xff0c;可能需要输入yes/no等信息&#xff0c;所以就用到expect来实现交互。 关键语法 ❶&#xff3b;#!/usr/bin/expect&#xff3d; 这一行告诉操…

MySQL之备份与恢复和MySQL用户工具(一)

备份与恢复 备份脚本化 为备份写一些脚本是标准做法。展示一个示例程序&#xff0c;其中必定有很多辅助内容&#xff0c;这只会增加篇幅&#xff0c;在这里我们更愿意列举一些典型的备份脚本功能&#xff0c;展示一些Perl脚本的代码片段。你可以把这些当作可重用的代码块&…

io流 多线程

目录 一、io流 1.什么是io流 2.流的方向 i.输入流 ii.输出流 3.操作文件的类型 i.字节流 1.拷贝 ii.字符流 ​3.字符流输出流出数据 4.字节流和字符流的使用场景 5.练习 6.缓冲流 1.字节缓冲流拷贝文件 2.字符缓冲流特有的方法 1.方法 2.总结 7.转换流基本用法…

数字信号处理及MATLAB仿真(3)——量化的其他概念

上回书说到AD转换的两个步骤——量化与采样两个步骤。现在更加深入的去了解以下对应的概念。学无止境&#xff0c;要不断地努力才有好的收获。万丈高楼平地起&#xff0c;唯有打好基础&#xff0c;才能踏实前行。 不说了&#xff0c;今天咱们继续说说这两个步骤&#xff0c;首先…

【国产开源可视化引擎Meta2d.js】网格

画布背景网格 在线体验&#xff1a; 乐吾乐2D可视化 示例&#xff1a; // 设置默认缺省网格属性 meta2d.store.options.grid true; // 开启 meta2d.store.options.gridColor eeeeee; // 网格线条颜色 meta2d.store.options.gridSize 10; // 格子大小// 设置单个图纸的网格…

pnpm的坑

请问pnpm的两个坑怎么解决&#xff1a; 第一个坑&#xff1a;没有节省磁盘空间 我已经配置了依赖的存储位置&#xff0c; 但我在项目里pnpm install以后&#xff0c;发现依赖包还是很大&#xff0c; 然后发现里面的链接并不是指向先前配置的依赖存储位置&#xff0c;而是指…

java核心-泛型

目录 概述什么是泛型分类泛型类泛型接口泛型方法 泛型通配符分类 泛型类型擦除分类无限制类型擦除有限制类型擦除 问题需求第一种第二种 概述 了解泛型有利于学习 jdk 、中间件的源码&#xff0c;提升代码抽象能力&#xff0c;封装通用性更强的组件。 什么是泛型 在定义类、接…

VSCode设置好看清晰的字体!中文用鸿蒙,英文用Jetbrains Mono

一、中文字体——HarmonyOS Sans SC 1、下载字体 官网地址&#xff1a;https://developer.huawei.com/consumer/cn/design/resource/ 直接下载&#xff1a;https://communityfile-drcn.op.dbankcloud.cn/FileServer/getFile/cmtyPub/011/111/111/0000000000011111111.20230517…

加装德国进口高精度主轴 智能手机壳「高质量高效率」钻孔铣槽

在当前高度智能化的社会背景下&#xff0c;智能手机早已成为人们生活、工作的必备品&#xff0c;智能手机壳作市场需求量巨大。智能手机壳的加工过程涉及多个环节&#xff0c;包括钻孔和铣槽等。钻孔要求精度高、孔位准确&#xff0c;而铣槽则需要保证槽位规整、深度适宜。这些…

【漏洞复现】TerraMaster TOS exportUser.php 远程命令执行

免责声明&#xff1a; 本文内容旨在提供有关特定漏洞或安全漏洞的信息&#xff0c;以帮助用户更好地了解可能存在的风险。公布此类信息的目的在于促进网络安全意识和技术进步&#xff0c;并非出于任何恶意目的。阅读者应该明白&#xff0c;在利用本文提到的漏洞信息或进行相关测…

Leetcode3195. 包含所有 1 的最小矩形面积 I

Every day a Leetcode 题目来源&#xff1a;3195. 包含所有 1 的最小矩形面积 I 解法1&#xff1a;遍历 设最左、最右、最上、最下的 1 的行号/列号分别为 left、right、top、bottom&#xff0c;则答案为&#xff1a;(right - left 1) * (bottom - top 1)。 代码&#xf…

JAVA 对象存储OSS工具类(腾讯云)

对象存储OSS工具类 import com.qcloud.cos.COSClient; import com.qcloud.cos.ClientConfig; import com.qcloud.cos.auth.BasicCOSCredentials; import com.qcloud.cos.auth.COSCredentials; import com.qcloud.cos.model.ObjectMetadata; import com.qcloud.cos.model.PutObj…

基于java+springboot+vue实现的仓库管理系统(文末源码+lw+ppt)23-499

第1章 绪论 伴随着信息社会的飞速发展&#xff0c;仓库管理所面临的问题也一个接一个的出现&#xff0c;所以现在最该解决的问题就是信息的实时查询和访问需求的问题&#xff0c;以及如何利用快捷便利的方式让访问者在广大信息系统中进行查询、分享、储存和管理。这对我们的现…

WordPress:快速搭建站点,wp安装及模版介绍

最近搭建个人站点比较多&#xff0c;都是想把业务做到国外&#xff0c;通过google来引流&#xff0c;那我们今年就来介绍一个比较受欢迎的站点平台wordPress。WordPress是使用PHP语言开发的博客平台&#xff0c;用户可以在支持PHP和MySQL数据库的服务器上架设属于自己的网站。也…

JavaScript 中的面向对象编程--->构造函数--->原型对象与原型链,由浅入深详细讲解!

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;我是前端菜鸟的自我修养&#xff01;今天给大家分享JavaScript 中的面向对象编程--->构造函数--->原型对象与原型链&#xff0c;由浅入深详细讲解&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&am…

【算法训练记录——Day42】

Day42——动态规划Ⅳ 1.leetcode_1049最后一块石头的重量II2.leetcode_494目标和3.leetcode_474一和零 1.leetcode_1049最后一块石头的重量II 思路&#xff1a;石头只能用一次。。。怎么才能让碰撞后重量最小呢&#xff0c;还要转换成动态规划&#xff0c;难以理解。。 看题解&…

基于轨迹信息的图像近距离可行驶区域方案验证

一 图像可行驶区域方案 1.1 标定场景 1.2 标定步骤 设计一定间距标定场&#xff0c;在标定场固定位置设置摄像头标定标识点。主车开到标定场固定位置录制主车在该位置各个摄像头数据&#xff0c;通过摄像头捕获图像获取图像上关键点坐标pts-2d基于标定场设计&#xff0c;计算…