【操作系统】进程管理——进程的同步与互斥(个人笔记)

学习日期:2024.7.8

内容摘要:进程同步/互斥的概念和意义,基于软/硬件的实现方法


进程同步与互斥的概念和意义

为什么要有进程同步机制?

回顾:在《进程管理》第一章中,我们学习了进程具有异步性的特征,即各个并发执行的进程以各自独立、不可预知的速度向前推进。

但是,有的情况下,我们希望某几个特定的进程按一定的顺序执行。比如说在进程通信——管道通信的时候,读进程和写进程是并发运行的,但是我们当然是希望是写数据的进程先传输信息,然后读数据的进程再接收。

所以,为了解决进程的异步性和我们对进程有序执行的需求的矛盾,操作系统需要提供进程同步机制。

什么是进程同步?

同步又称直接制约关系,它是指为了完成某种任务而建立的两个或多个进程,因为需要在某些位置上协调他们的工作次序而产生的制约关系。进程间的同步就是源于它们之间的相互合作。

为什么要有进程互斥机制?

进程的“并发”需要“共享”的支持,各个并发执行的进程不可避免的需要共享一些系统资源,比如说内存或打印机、摄像头这样的I/O设备,而不是所有的系统资源都有足够的量,或者能同时分配给多个进程共享的,为了解决系统资源的有限性和多个进程对同一资源的需求的矛盾,需要提供进程互斥机制。

我们把一个时间段内只允许一个进程使用的资源称为临界资源,很多I/O设备(打印机、摄像头)都属于临界资源,此外还有许多变量、数据、内存缓冲区等都属于临界资源,对临界资源的访问必须互斥进行。

什么是进程互斥?

互斥又称间接制约关系,它是指当一个进程访问某个临界资源时,其它想访问该临界资源的进程必须等待,直到该进程的访问结束,释放该资源以后,另一个进程才能访问。

进程互斥的逻辑分区

临界区是进程中访问临界资源的代码段,进入区和退出区是负责实现互斥的代码段

进程互斥的四大原则

为了实现对对临界资源的互斥访问,同时保证系统整体性能,需要满足:

1.空闲让进。临界区空闲时允许一个请求进入临界区的进程立即进入。

2.忙则等待。当已有进程进入临界区时,其它试图进入的进程必须等待。

3.有限等待。对请求访问的进程,应保证其能在有限时间内进入临界区,不会饥饿。

4.让权等待。当进程不能进入临界区时,立即释放处理机,避免进程占用处理机的同时等待(忙等待)。


进程互斥的软件实现方法

单标志法

算法思想:两个进程在访问完临界区后,会把使用临界区的权限转交给另一个进程,也就是说每个进程进入临界区的权限只能被另一个进程赋予。

如图,turn的初始值为0,即刚开始只允许0号进程进入临界区。

若P1先上,则会一直卡在⑤,直到P1的时间片用完,切换回P0,直到P0正常访问完临界资源,退出时将turn改为1,P1才能进入临界区。

两个进程互相“谦让”,轮流使用临界资源。每次使用前,先检查是否轮到自己使用,如果没轮到就等待,如果轮到就使用,然后在使用完之后把使用权让出

缺点:进程必须轮流访问临界区,但如果此时允许进入临界区的进程是P0,P0却一直不访问临界区,就会导致在临界区资源空闲的前提下,P1一直不能访问临界区。这违背了“空闲让进”原则。

双标志先检查法

算法思想:设置一个布尔型数组flag[],数组中的各个元素用来标记各个进程想进入临界区的意愿。比如"flag[0]=true''表示0号进程现在想进入临界区,每个进程在进入临界区之前,先检查有没有别的进程想进入临界区,如果没有,则把自身对应的标志flag[i]设为true,之后开始访问临界区。

好比两个人互斥的使用公共厕所(这个确实不太能共享),进去之前先看一下厕所是不是显示“有人”(检查其它进程意愿),如果没人就打开门进去,挂上“有人”的牌子(标记为本进程想进入临界区),最后在上完厕所之后,再把牌子取下来。(访问完之后修改标记)

缺点:P0和P1在某些情况下,可能同时访问临界区,违背了“忙则等待”原则。

因为进入区的“检查”和“上锁”两个步骤不是一气呵成的。生活中我们可以看到旁边有人也想上厕所,但是进程不行。进程在“检查”后看到门口没有牌子就打开了厕所门,但此时是可能发生进程切换的,若进程A检查完还没有挂上牌子时,切换到了进程B,进程B此时发现厕所门没有牌子,就打开进去上厕所了,但一段时间之后进程A又切换回来,因为之前已经检查过了,所以进程A不会看牌子,会直接打开厕所门,导致A和B同时使用一个厕所(没能互斥)。即上述代码顺序为①⑤②⑥...时,会导致P0和P1同时访问临界区。

双标志后检查法

算法思想:双标志先检查法的改版。前一个算法的问题是先“检查”后“标记”,但是这两个操作无法一气呵成,导致两个进程同时进入临界区的问题,因此该方法是先“标记”后“检查”

与上一方法对比来看,就是交换了检查和标记的位置。

还是以上厕所来举例,此方法就是在进入厕所前先不看有没有牌子,只要自己想上,就先挂一个“有人”的牌子,然后再检查有没有别人的牌子,如果没有就直接进去,如果有就等待别人的牌子被取下。

缺点:与前一个算法有类似的问题,因为标记和检查的过程不连贯当上述代码顺序为①⑤②⑥...时,会出现明明临界区空闲,但P0和P1都无法访问临界区的情况,违背了“空闲让进”和“有限等待”原则,会导致进程饥饿。

进程A首先给厕所门挂上了牌子,但是此时发生了进程切换,换到进程B,进程B也会直接挂上牌子,然后又切换回了进程A,此时进程A执行检查步骤,发现门上有进程B的牌子,会开始等待。当进程A的时间片用完后,切到进程B,B发现门上有进程A的牌子,也不敢进去,这样其实厕所里根本没人,但是AB双方都误以为有人,会无限的等待下去,导致进程饥饿(憋死了)。

Peterson算法(重难点)

算法思想:结合双标志法、单标志法的思想,同时设置布尔数组flag[]和整型变量turn。如果双方都想进入临界区,那么可以让进程互相谦让。

 进程首先表达意愿,然后把turn设为对方的编号表示谦让,注意理解此处while判断的含义,(while通过的意思是被循环卡住了,循环等待),检查是否是对方想进,且自己表达了最后一次的“谦让”

很绕,我们结合例子来理解

进程P0首先声明自己想上厕所,挂上牌子,然后表示我愿意谦让给对方先上(更新turn值),然后判断是否厕所门上有对方的牌子,且最后是自己表达了谦让,如果都满足就等待对方结束,否则开始上厕所。

谁在最后谦让了(修改turn值了),说“客气话”了,谁就会失去行动的优先权

P0说:“你也想上厕所?那你先请吧”,但是P1说:“不了不了,还是你先。”然后P0就会去上厕所

因为P1已经说了你先请(turn=0),P1就“不好意思”在P0谦让之前上厕所,对P0也是同理。

当执行顺序为①⑥②⑦时,首先进程P0挂上牌子,切到P1挂上牌子,然后P0谦让,turn=1,切到P1谦让,turn=0。

此时若切回P0,下一步是③,则门上有P1的牌子,但是turn=0,对于P0来说,上一次谦让的不是自己(上一步不是②)所以P0不会等待,直接开始使用。

若P1谦让后继续执行,下一步是⑧,则门上有P0的牌子,且turn=0,对于P1来说,上一次谦让的是自己(⑦和⑧连续执行)所以要等待,直到切换回P0,P0会直接开始使用。

当执行顺序为①⑥②时,首先进程挂上P0牌子,切到P1挂上牌子,然后P0谦让,turn=1。

 若下一步是⑦则同上,若下一步是③,此时门上有P1的牌子,且turn=1,对于P0来说,上一次谦让的是自己(②和③连续执行),所以要等待,直到切换回P1,P1会直接开始使用。

同理,当执行顺序是①⑥⑦时,和①⑥②没有区别,只相当于对换了P0和P1进程而已。

至此,我们已经列举了前两步是①⑥的所有情况,都不会产生问题,所以Peterson算法不会因为检查和标记的不连贯产生问题。

缺点:Peterson算法用软件方法解决了进程互斥问题,遵循了空闲让进、忙则等待、有限等待三个原则,但是没有遵循让权等待的原则,会发生“忙等”。(进程缺乏临界资源却占用处理机等待)

其相较于之前介绍的三种软件解决方案来说是最好的,但是依然不够好。


进程互斥的硬件实现方法

前面介绍的方法中,很多问题都是由于标记和检查的过程不连贯,不能一气呵成导致的,这让我们想到之前在《进程控制》章节中学习过的“原语”,如果可以用某种方法一气呵成,中间不发生进程切换,不就解决问题了吗?

中断屏蔽方法

利用“开/关中断指令实现”(与原语的实现思想相同,即在某进程开始访问临界区到结束为止,都不允许被中断,也就不能发生进程切换)

优点:简单,高效。

缺点:不适用于多处理机,因为如果是多核处理机,处理机A和处理机B上的进程可能同时访问同一个临界资源,且都不能被中断。

而且开/关中断指令的权限非常高,只适用于内核进程,不适用于用户进程,应用范围不够广泛。

TestAndSet指令

简称TS指令或TSL指令,L代表Lock,TSL指令是用硬件实现的,执行的过程不允许被中断,只能一气呵成

以下是C语言描述的逻辑演示:

若刚开始lock是false(未上锁),则TestAndSet指令返回的old值为flase,while循环条件不满足,不会卡住,会跳过循环进入临界区

若刚开始是true,则TS指令返回的old值也是true,while循环条件满足,循环等待,直到当前访问临界区的进程更新lock值“解锁”。

TS指令中每次都设成true是因为每次TS指令运行都是有程序想访问临界区,要上锁。

实际上TS指令不是真的return一个值,而是把这个值存到某个物理寄存器里面,是用汇编语言执行的。

优点:实现简单,无需像软件实现方法那样严格检查逻辑漏洞,且适用于多处理机环境。

缺点:不满足“让权等待”原则,暂时无法进入临界区的进程依然会占用CPU并且循环等待,即“忙等”。

Swap指令

又称Exchange指令或者XCHG指令(Exchange,什么天才简称),Swap指令是用硬件实现的,执行的过程同样不允许被中断,只能一气呵成

逻辑描述如下:

其实和TSL在逻辑上是相同的,先给old赋值为true,然后交换lock和old的值,事实上就是给lock赋值true(上锁),然后判断old的值是不是true,如果是,说明之前就是上锁的,则循环等待直到解锁,如果不是,则跳出循环开始运行。

优缺点同TS指令一样,实现简单、适用于多处理机环境,但不满足让权等待原则,会导致忙等。

补充:互斥锁

互斥锁是解决临界区的简单工具,可以理解为一个布尔型的变量,通常用硬件操作实现。

以上方法(除中断屏蔽法)都依赖于内部的一个while循环语句来实现互斥,这是最简单的互斥锁,这种需要连续循环忙等的锁叫自旋锁(spin lock),顾名思义就是在自己循环转圈,其最大缺点就是忙等待。

使用这种方法,进程在时间片用完后才会下处理机,会违反“让权等待”原则,但优点是等待期间不用切换进程上下文,常用于多处理器系统,一个核忙等,另外的核正常工作,并快速释放临界资源,不必频繁切换进程。但不太适用于单处理机系统,忙等的过程不可能解锁,白白浪费时间和CPU资源。


 内容总结自王道计算机考研《操作系统》 和 人民邮电出版社《操作系统导论》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/372386.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何安全隐藏IP地址,防止网络攻击?

当您想在互联网上保持隐私或匿名时,您应该做的第一件事就是隐藏您的 IP 地址。您的 IP 地址很容易被追踪到您,并被用来了解您的位置。下面的文章将教您如何隐藏自己,不让任何试图跟踪您的活动的人发现。 什么是 IP 地址? 首先&am…

JavaWeb系列二十一: 数据交换和异步请求(JSON, Ajax)

文章目录 官方文档JSON介绍JSON快速入门JSON对象和字符串对象转换应用案例注意事项和细节 JSON在java中使用说明JSON在Java中应用场景应用实例1.3.3 Map对象和JSON字符串转换 2. Ajax介绍2.1 Ajax应用场景2.2 传统的web应用-数据通信方式2.3 Ajax-数据通信方式2.4 Ajax文档使用…

百度云智能媒体内容分析一体机(MCA)建设

导读 :本文主要介绍了百度智能云MCA产品的概念和应用。 媒体信息海量且复杂,采用人工的方式对视频进行分析处理,面临着效率低、成本高的困难。于是,MCA应运而生。它基于百度自研的视觉AI、ASR、NLP技术,为用户提供音视…

标准盒模型和怪异盒子模型的区别

盒模型描述了一个 HTML 元素所占用的空间,由内容(content)、内边距(padding)、边框(border)和外边距(margin)组成。 可以通过修改元素的box-sizing属性来改变元素的盒模型…

idea 默认路径修改

1.查看 idea 的安装路径(右键点击 idea 图标,查看路径 ) “C:\Program Files\JetBrains\IntelliJ IDEA 2021.3.1\bin\idea64.exe” 在 bin 目录查看 idea.properties 文件,修改以下四个路径文件 # idea.config.path${user.home}/…

【matlab】李雅普诺夫稳定性分析

目录 引言 一、基本概念 二、李雅普诺夫稳定性分析方法 1. 第一方法(间接法) 2. 第二方法(直接法) 三、应用与发展 matalb代码 对称矩阵的定号性(正定性)的判定 线性定常连续系统的李雅普诺夫稳定性 线性定常离散系统的李雅普诺夫…

QT5.12.9 通过MinGW64 / MinGW32 cmake编译Opencv4.5.1

一、安装前准备: 1.安装QT,QT5.12.9官方下载链接:https://download.qt.io/archive/qt/5.12/5.12.9/ QT安装教程:https://blog.csdn.net/Mark_md/article/details/108614209 如果电脑是64位就编译器选择MinGW64,32位就选择MinGW…

车载测试之-CANoe创建仿真工程

在现代汽车工业中,车载测试是确保车辆电子系统可靠性和功能性的关键环节。而使用CANoe创建仿真工程,不仅能够模拟真实的车辆环境,还能大大提升测试效率和准确性。那么,CANoe是如何实现这些的呢? 车载测试中&#xff0…

使用Keil 点亮LED灯 F103ZET6

1.新建项目 不截图了 2.startup_stm32f10x_hd.s Keil\Packs\Keil\STM32F1xx_DFP\2.2.0\Device\Source\ARM 搜索startup_stm32f10x_hd.s 复制到项目路径,双击Source Group 1 3.项目文件夹新建stm32f10x.h, 新建文件main.c #include "stm32f10x…

【Python】不小心卸载pip后(手动安装pip的两种方式)

文章目录 方法一:使用get-pip.py脚本方法二:使用easy_install注意事项 不小心卸载pip后:手动安装pip的两种方式 在使用Python进行开发时,pip作为Python的包管理工具,是我们安装和管理Python库的重要工具。然而&#x…

Linux 内核 GPIO 用户空间接口

文章目录 Linux 内核 GPIO 接口旧版本方式:sysfs 接口新版本方式:chardev 接口 gpiod 库及其命令行gpiod 库的命令行gpiod 库函数的应用 GPIO(General Purpose Input/Output,通用输入/输出接口),是微控制器…

软件产品必须进行软件测试吗?软件产品测试报告重要性介绍

在现代社会,软件已经渗透到我们生活的方方面面,软件的质量对我们的生活和工作有着重要的影响。因此,软件测试是非常重要的。 软件产品进行测试主要有以下好处:随着软件的复杂性增加,软件中的缺陷也越来越多&#xff0…

Open3D 计算点云的平均密度

目录 一、概述 1.1基于领域密度计算原理 1.2应用 二、代码实现 三、实现效果 2.1点云显示 2.2密度计算结果 一、概述 在点云处理中,点的密度通常表示为某个点周围一定区域内的点的数量。高密度区域表示点云较密集,低密度区域表示点云较稀疏。计算…

jmeter-beanshell学习5-beanshell加减乘除运算

我用到的场景是计算金额,所以主要以金额为主,感觉这部分有点麻烦,直接写遇到的几个坑,就不演示解决的过程了。 1.最早写了个两数相减,但是小数精度容易出现问题。比如1-0.010.989999997这种情况,随便写的几…

DDD架构

1.DDD架构的概念: 领域驱动设计(Domain-Driven Design, DDD)是一种软件设计方法,旨在将软件系统的设计和开发焦点集中在领域模型上,以解决复杂业务问题 2.DDD架构解决了什么问题: 在以前的mvc架构种,三层结…

Linux系统下的用户管理模式

Linux系统下的用户管理模式 本文以属于Linux系统基本概念,如果以查找教程教程,解决问题为主,只需要查看本文后半部分。 如需要系统性学习请查看本文前半部分。 文章目录 Linux系统下的用户管理模式1. Linux下用户的概念2. 创建不同类型的用户…

Johnson Counter

目录 描述 输入描述: 输出描述: 参考代码 描述 请用Verilog实现4位约翰逊计数器(扭环形计数器),计数器的循环状态如下。 电路的接口如下图所示。 输入描述: input clk , input …

第一百四十九节 Java数据类型教程 - Java子字符串、字符串转换

Java数据类型教程 - Java子字符串 获取子字符串 我们可以使用substring()方法来获取字符串的子部分。 我们可以将开始索引作为参数,并返回一个从开始索引开始到字符串结尾的子串。 我们还可以将开始索引和结束索引作为参数。 它返回从开始索引开始的子字符串和小…

[数仓]七、离线数仓(PrestoKylin即席查询)

第1章 Presto 1.1 Presto简介 1.1.1 Presto概念 1.1.2 Presto架构 1.1.4 Presto、Impala性能比较 Presto、Impala性能比较_presto和impala对比-CSDN博客 测试结论:Impala性能稍领先于Presto,但是Presto在数据源支持上非常丰富,包括Hive、图数据库、传统关系型数据库、Re…

记录一次Nginx的使用过程

一、Docker安装配置nginx 1.拉取镜像 docker pull nginx2.创建挂载目录 启动前需要先创建Nginx外部挂载目录文件夹 主要有三个目录 conf:配置文件目录log:日志文件目录html:项目文件目录(这里可以存放web文件) 创建挂…