学习日期:2024.7.8
内容摘要:进程同步/互斥的概念和意义,基于软/硬件的实现方法
进程同步与互斥的概念和意义
为什么要有进程同步机制?
回顾:在《进程管理》第一章中,我们学习了进程具有异步性的特征,即各个并发执行的进程以各自独立、不可预知的速度向前推进。
但是,有的情况下,我们希望某几个特定的进程按一定的顺序执行。比如说在进程通信——管道通信的时候,读进程和写进程是并发运行的,但是我们当然是希望是写数据的进程先传输信息,然后读数据的进程再接收。
所以,为了解决进程的异步性和我们对进程有序执行的需求的矛盾,操作系统需要提供进程同步机制。
什么是进程同步?
同步又称直接制约关系,它是指为了完成某种任务而建立的两个或多个进程,因为需要在某些位置上协调他们的工作次序而产生的制约关系。进程间的同步就是源于它们之间的相互合作。
为什么要有进程互斥机制?
进程的“并发”需要“共享”的支持,各个并发执行的进程不可避免的需要共享一些系统资源,比如说内存或打印机、摄像头这样的I/O设备,而不是所有的系统资源都有足够的量,或者能同时分配给多个进程共享的,为了解决系统资源的有限性和多个进程对同一资源的需求的矛盾,需要提供进程互斥机制。
我们把一个时间段内只允许一个进程使用的资源称为临界资源,很多I/O设备(打印机、摄像头)都属于临界资源,此外还有许多变量、数据、内存缓冲区等都属于临界资源,对临界资源的访问必须互斥进行。
什么是进程互斥?
互斥又称间接制约关系,它是指当一个进程访问某个临界资源时,其它想访问该临界资源的进程必须等待,直到该进程的访问结束,释放该资源以后,另一个进程才能访问。
进程互斥的逻辑分区
临界区是进程中访问临界资源的代码段,进入区和退出区是负责实现互斥的代码段
进程互斥的四大原则
为了实现对对临界资源的互斥访问,同时保证系统整体性能,需要满足:
1.空闲让进。临界区空闲时允许一个请求进入临界区的进程立即进入。
2.忙则等待。当已有进程进入临界区时,其它试图进入的进程必须等待。
3.有限等待。对请求访问的进程,应保证其能在有限时间内进入临界区,不会饥饿。
4.让权等待。当进程不能进入临界区时,立即释放处理机,避免进程占用处理机的同时等待(忙等待)。
进程互斥的软件实现方法
单标志法
算法思想:两个进程在访问完临界区后,会把使用临界区的权限转交给另一个进程,也就是说每个进程进入临界区的权限只能被另一个进程赋予。
如图,turn的初始值为0,即刚开始只允许0号进程进入临界区。
若P1先上,则会一直卡在⑤,直到P1的时间片用完,切换回P0,直到P0正常访问完临界资源,退出时将turn改为1,P1才能进入临界区。
两个进程互相“谦让”,轮流使用临界资源。每次使用前,先检查是否轮到自己使用,如果没轮到就等待,如果轮到就使用,然后在使用完之后把使用权让出。
缺点:进程必须轮流访问临界区,但如果此时允许进入临界区的进程是P0,P0却一直不访问临界区,就会导致在临界区资源空闲的前提下,P1一直不能访问临界区。这违背了“空闲让进”原则。
双标志先检查法
算法思想:设置一个布尔型数组flag[],数组中的各个元素用来标记各个进程想进入临界区的意愿。比如"flag[0]=true''表示0号进程现在想进入临界区,每个进程在进入临界区之前,先检查有没有别的进程想进入临界区,如果没有,则把自身对应的标志flag[i]设为true,之后开始访问临界区。
好比两个人互斥的使用公共厕所(这个确实不太能共享),进去之前先看一下厕所是不是显示“有人”(检查其它进程意愿),如果没人就打开门进去,挂上“有人”的牌子(标记为本进程想进入临界区),最后在上完厕所之后,再把牌子取下来。(访问完之后修改标记)
缺点:P0和P1在某些情况下,可能同时访问临界区,违背了“忙则等待”原则。
因为进入区的“检查”和“上锁”两个步骤不是一气呵成的。生活中我们可以看到旁边有人也想上厕所,但是进程不行。进程在“检查”后看到门口没有牌子就打开了厕所门,但此时是可能发生进程切换的,若进程A检查完还没有挂上牌子时,切换到了进程B,进程B此时发现厕所门没有牌子,就打开进去上厕所了,但一段时间之后进程A又切换回来,因为之前已经检查过了,所以进程A不会看牌子,会直接打开厕所门,导致A和B同时使用一个厕所(没能互斥)。即上述代码顺序为①⑤②⑥...时,会导致P0和P1同时访问临界区。
双标志后检查法
算法思想:双标志先检查法的改版。前一个算法的问题是先“检查”后“标记”,但是这两个操作无法一气呵成,导致两个进程同时进入临界区的问题,因此该方法是先“标记”后“检查”。
与上一方法对比来看,就是交换了检查和标记的位置。
还是以上厕所来举例,此方法就是在进入厕所前先不看有没有牌子,只要自己想上,就先挂一个“有人”的牌子,然后再检查有没有别人的牌子,如果没有就直接进去,如果有就等待别人的牌子被取下。
缺点:与前一个算法有类似的问题,因为标记和检查的过程不连贯,当上述代码顺序为①⑤②⑥...时,会出现明明临界区空闲,但P0和P1都无法访问临界区的情况,违背了“空闲让进”和“有限等待”原则,会导致进程饥饿。
进程A首先给厕所门挂上了牌子,但是此时发生了进程切换,换到进程B,进程B也会直接挂上牌子,然后又切换回了进程A,此时进程A执行检查步骤,发现门上有进程B的牌子,会开始等待。当进程A的时间片用完后,切到进程B,B发现门上有进程A的牌子,也不敢进去,这样其实厕所里根本没人,但是AB双方都误以为有人,会无限的等待下去,导致进程饥饿(憋死了)。
Peterson算法(重难点)
算法思想:结合双标志法、单标志法的思想,同时设置布尔数组flag[]和整型变量turn。如果双方都想进入临界区,那么可以让进程互相谦让。
进程首先表达意愿,然后把turn设为对方的编号表示谦让,注意理解此处while判断的含义,(while通过的意思是被循环卡住了,循环等待),检查是否是对方想进,且自己表达了最后一次的“谦让”
很绕,我们结合例子来理解
进程P0首先声明自己想上厕所,挂上牌子,然后表示我愿意谦让给对方先上(更新turn值),然后判断是否厕所门上有对方的牌子,且最后是自己表达了谦让,如果都满足就等待对方结束,否则开始上厕所。
谁在最后谦让了(修改turn值了),说“客气话”了,谁就会失去行动的优先权。
P0说:“你也想上厕所?那你先请吧”,但是P1说:“不了不了,还是你先。”然后P0就会去上厕所
因为P1已经说了你先请(turn=0),P1就“不好意思”在P0谦让之前上厕所,对P0也是同理。
当执行顺序为①⑥②⑦时,首先进程P0挂上牌子,切到P1挂上牌子,然后P0谦让,turn=1,切到P1谦让,turn=0。
此时若切回P0,下一步是③,则门上有P1的牌子,但是turn=0,对于P0来说,上一次谦让的不是自己(上一步不是②),所以P0不会等待,直接开始使用。
若P1谦让后继续执行,下一步是⑧,则门上有P0的牌子,且turn=0,对于P1来说,上一次谦让的是自己(⑦和⑧连续执行),所以要等待,直到切换回P0,P0会直接开始使用。
当执行顺序为①⑥②时,首先进程挂上P0牌子,切到P1挂上牌子,然后P0谦让,turn=1。
若下一步是⑦则同上,若下一步是③,此时门上有P1的牌子,且turn=1,对于P0来说,上一次谦让的是自己(②和③连续执行),所以要等待,直到切换回P1,P1会直接开始使用。
同理,当执行顺序是①⑥⑦时,和①⑥②没有区别,只相当于对换了P0和P1进程而已。
至此,我们已经列举了前两步是①⑥的所有情况,都不会产生问题,所以Peterson算法不会因为检查和标记的不连贯产生问题。
缺点:Peterson算法用软件方法解决了进程互斥问题,遵循了空闲让进、忙则等待、有限等待三个原则,但是没有遵循让权等待的原则,会发生“忙等”。(进程缺乏临界资源却占用处理机等待)
其相较于之前介绍的三种软件解决方案来说是最好的,但是依然不够好。
进程互斥的硬件实现方法
前面介绍的方法中,很多问题都是由于标记和检查的过程不连贯,不能一气呵成导致的,这让我们想到之前在《进程控制》章节中学习过的“原语”,如果可以用某种方法一气呵成,中间不发生进程切换,不就解决问题了吗?
中断屏蔽方法
利用“开/关中断指令实现”(与原语的实现思想相同,即在某进程开始访问临界区到结束为止,都不允许被中断,也就不能发生进程切换)
优点:简单,高效。
缺点:不适用于多处理机,因为如果是多核处理机,处理机A和处理机B上的进程可能同时访问同一个临界资源,且都不能被中断。
而且开/关中断指令的权限非常高,只适用于内核进程,不适用于用户进程,应用范围不够广泛。
TestAndSet指令
简称TS指令或TSL指令,L代表Lock,TSL指令是用硬件实现的,执行的过程不允许被中断,只能一气呵成。
以下是C语言描述的逻辑演示:
若刚开始lock是false(未上锁),则TestAndSet指令返回的old值为flase,while循环条件不满足,不会卡住,会跳过循环进入临界区
若刚开始是true,则TS指令返回的old值也是true,while循环条件满足,循环等待,直到当前访问临界区的进程更新lock值“解锁”。
TS指令中每次都设成true是因为每次TS指令运行都是有程序想访问临界区,要上锁。
实际上TS指令不是真的return一个值,而是把这个值存到某个物理寄存器里面,是用汇编语言执行的。
优点:实现简单,无需像软件实现方法那样严格检查逻辑漏洞,且适用于多处理机环境。
缺点:不满足“让权等待”原则,暂时无法进入临界区的进程依然会占用CPU并且循环等待,即“忙等”。
Swap指令
又称Exchange指令或者XCHG指令(Exchange,什么天才简称),Swap指令是用硬件实现的,执行的过程同样不允许被中断,只能一气呵成。
逻辑描述如下:
其实和TSL在逻辑上是相同的,先给old赋值为true,然后交换lock和old的值,事实上就是给lock赋值true(上锁),然后判断old的值是不是true,如果是,说明之前就是上锁的,则循环等待直到解锁,如果不是,则跳出循环开始运行。
优缺点同TS指令一样,实现简单、适用于多处理机环境,但不满足让权等待原则,会导致忙等。
补充:互斥锁
互斥锁是解决临界区的简单工具,可以理解为一个布尔型的变量,通常用硬件操作实现。
以上方法(除中断屏蔽法)都依赖于内部的一个while循环语句来实现互斥,这是最简单的互斥锁,这种需要连续循环忙等的锁叫自旋锁(spin lock),顾名思义就是在自己循环转圈,其最大缺点就是忙等待。
使用这种方法,进程在时间片用完后才会下处理机,会违反“让权等待”原则,但优点是等待期间不用切换进程上下文,常用于多处理器系统,一个核忙等,另外的核正常工作,并快速释放临界资源,不必频繁切换进程。但不太适用于单处理机系统,忙等的过程不可能解锁,白白浪费时间和CPU资源。
内容总结自王道计算机考研《操作系统》 和 人民邮电出版社《操作系统导论》