【基于R语言群体遗传学】-13-群体差异量化-Fst

在前几篇博客中,我们深度学习讨论了适应性进化的问题,从本篇博客开始,我们关注群体差异的问题,建议大家可以先看之前的博客:群体遗传学_tRNA做科研的博客-CSDN博客


一些新名词

Meta-population:An interconnected group of smaller populations.

亚种群:一个由较小的种群相互连接组成的群体。

Deme:Asingle population within a meta-population.

局域种群:亚种群内的单个种群。

Sub-population:A group of individuals within a population that are more likely to breed with each other than members of other sub-populations.

子种群:种群中的一组个体,它们彼此之间比其他子种群的成员更有可能进行繁殖。

分化的量化(quantifying divergence)-Fst

群体遗传学的一个共同关注点是量化可识别种群之间的差异。衡量种群间差异的一个关键指标是FST,它已经被反复定义和重新定义。FST是由Sewall Wright推导出的F统计量之一(更多信息请参见Weir 2012),广义上是对两个相关种群之间遗传差异的量化,通常在从零(无差异)到一(完全差异)的范围内变化

从概念上讲,FST可以被理解为一种度量,它告诉我们相对于整个种群的总多样性,不同亚种群之间缺失了多少多样性。换句话说,如果FST的值接近1,这意味着亚种群之间的遗传差异很大,每个亚种群可能具有独特的遗传特征;而如果FST的值接近0,则意味着亚种群之间的遗传差异很小,它们在遗传上是相似的。

FST的计算通常涉及到比较种群内的遗传变异与种群间的遗传变异。一个高的FST值表明种群间的遗传变异占总体遗传变异的比例较高,即种群间的差异较大;而一个低的FST值则表明种群内的遗传变异占主导,种群间的差异较小。


根据哈代-温伯格定律,我们知道当有等位基因频率时,我们可以预期的多样性(即杂合子)的数量是2p(1-p)。如果我们有多个亚种群的等位基因频率测量,我们可以说我们总的预期杂合性(HT)是:

其中p是所有亚种群的平均等位基因频率。我们可以将这个值与我们在每个亚种群内观察到的杂合性水平(HS)的平均值进行对比,如果我们有两个亚种群,那么HS将是 :

其中p1是亚种群1中的等位基因频率,p2是亚种群2中的等位基因频率,H1和H2是每个亚种群内杂合性的相应度量。

我们可以可视化Hs与Ht:

# 定义两个群体的等位基因频率
p1 <- 0.15 # 第一个群体的等位基因频率
p2 <- 0.7  # 第二个群体的等位基因频率# 计算每个群体的杂合子比例(遗传多样性)
h1 <- 2*p1*(1-p1) # 第一个群体的杂合子比例
h2 <- 2*p2*(1-p2) # 第二个群体的杂合子比例# 计算两个群体等位基因频率的平均值
p_ave <- (p1+p2)/2 # 平均等位基因频率# 计算在平均等位基因频率下的杂合子比例(总体遗传多样性)
ht <- 2*p_ave*(1-p_ave) # 总体的杂合子比例# 计算两个群体杂合子比例的平均值(种群的遗传多样性)
hs <- (h1 + h2)/2 # 种群的杂合子比例# 绘制等位基因频率与杂合子数量的曲线图
curve(2*x*(1-x), from=0, to=1, xlab="Allele frequency", # x轴为等位基因频率,y轴为杂合子数量ylab="Heterozygotes", lwd=2) # 线条宽度为2# 在图中标出两个群体的具体点
points(c(p1,p2), c(h1,h2), cex=2, pch=16) # 使用大小为2的点,形状为16# 标出平均等位基因频率下的种群和总体杂合子比例
points(c(p_ave,p_ave), c(hs,ht), cex=2) # 使用大小为2的点# 在图中添加文本标签
text(x=p1, y=h1-0.03, "H1") # 在第一个群体杂合子比例下方添加标签H1
text(x=p2, y=h2-0.03,"H2") # 在第二个群体杂合子比例下方添加标签H2
text(x=p_ave, y=hs-0.03,"Hs") # 在种群杂合子比例下方添加标签Hs
text(x=p_ave+0.03, y=ht-0.03, "Ht") # 在总体杂合子比例下方添加标签Ht# 添加连接线
lines(c(p1,p2), c(h1,h2), lty=2) # 连接两个群体杂合子比例的虚线
lines(c(p_ave,p_ave), c(hs,ht)) # 连接种群和总体杂合子比例的实线

我们可以观察到预期杂合度(heterozygosity)的2p(1-p)曲线呈向下凹的形状。这种曲线的特性意味着,当两个群体具有不同的等位基因频率,从而有不同的预期杂合度(如图中的H1和H2所示)时,它们之间的组合中点(即图中虚线上的HS)总是低于预期的总杂合度(HT)。 这个现象揭示了群体遗传学中的一个重要原理:当考虑多个群体的遗传多样性时,简单地取其等位基因频率的算术平均值并不能准确反映整体的遗传多样性。实际上,由于2p(1-p)曲线的凹性质,两个群体等位基因频率的平均值所对应的杂合度(HS)会低于这两个群体合并后的实际总杂合度(HT)。换句话说,合并群体的总遗传多样性高于基于各自群体等位基因频率平均值预测的遗传多样性。 这一发现对于理解不同群体间的遗传交流、保护生物多样性以及制定合理的保护策略具有重要意义。它提示我们在评估和比较不同群体的遗传多样性时,不能仅仅依赖于等位基因频率的简单平均值,而应该综合考虑各群体的实际遗传构成。


Fst是一个衡量群体间遗传分化的指标,它描述的是群体内与群体间遗传变异的比例。具体来说,Fst测量的是在HS(种群内平均杂合度)与HT(总体杂合度)之间“缺失”的杂合度部分,并且这个差值是通过HT来标准化的:

在群体遗传学中,衡量两个群体间等位基因频率差异的最大情况是一个群体为100%,另一个群体为0%。在这种情况下,不存在杂合子,因此我们的H1和H2测量值都将是零。根据FST的计算公式,FST = 1 - (HS/HT),在这种极端情况下,HS(种群内平均杂合度)为0,HT(总体杂合度)为0.5,所以FST = 1 - (0/0.5) = 1。这表明两个群体间存在完全的遗传分化,没有任何遗传物质的交流。 另一方面,如果两个亚群体之间的等位基因频率测量值完全相同,那么H1和H2也将完全相同。无论我们如何计算平均值,H1 = H2 = HS = HT,这意味着(HS/HT)将等于1,从而使得FST = 0。这表示两个群体间没有遗传分化,它们在遗传上是相同的。 FST的这种性质使其成为衡量群体间遗传差异的一个非常有用的工具。FST值为1表明群体间完全隔离,没有任何基因流;而FST值为0则表示群体间完全混合,遗传上没有区别。

实际FST值通常介于0和1之间,反映了不同程度的遗传分化。我们使用之前的例子来说明:

library(popgenr)
data(snp)
h_exp <- 2*snp$p*(1-snp$p)
fst <- (h_exp-snp$het) / h_exp
mean(fst)

FST是一个衡量群体间遗传分化的指标,它量化了不同群体之间的遗传差异,但本身并不提供这些差异产生的原因。群体间的遗传差异可能由多种因素造成,例如迁移率较低并伴有遗传漂变、近期的共同祖先后发生隔离和漂变、或者某些位点上强烈的选择作用导致不同地点的适应性变化等。 FST值的高低可以反映出群体间遗传结构的差异程度,但它并不直接说明这些差异是如何形成的。例如,一个较高的FST值可能指示群体间存在较少的基因流动,但这并不一定意味着迁移率低是唯一的原因。同样,群体间共享的近期祖先历史也可能导致遗传分化,而这种分化并不一定与迁移率直接相关。此外,如果某些基因位点受到强烈的选择压力,而这些位点在不同地理位置的适应性有所不同,那么这也可能导致FST值升高,尽管这种选择作用并不是由迁移率直接引起的。 因此,虽然FST是一个有用的工具来量化群体间的遗传差异,但要理解这些差异背后的生物学过程和机制,通常需要结合其他遗传学、生态学和进化生物学的研究方法和数据。这可能包括对迁移模式的直接研究、对群体历史的推断分析,以及对自然选择作用的检测等。通过这些综合的方法,研究者可以更全面地揭示导致群体遗传分化的复杂因素。

下一篇博客将讨论种群回溯祖先相关内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/372445.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

名企面试必问30题(二十七)——你能为公司带来什么呢?

回答一&#xff1a; “首先&#xff0c;我具备扎实的软件测试专业知识和丰富的实践经验。我能够运用各种测试方法和工具&#xff0c;确保公司产品的质量&#xff0c;降低产品上线后的风险。 其次&#xff0c;我善于发现问题和解决问题。在测试过程中&#xff0c;我不仅能找出软…

Open3D 从体素网格构建八叉树

目录 一、概述 1.1体素网格 1.2八叉树构建 1.3应用 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 3.1原始点云 3.2体素网格 3.3八叉树 3.4体素网格 一、概述 八叉树&#xff08;Octree&#xff09;是一种树状数据结构&#xff0c;用于递归地将三维空间划分为…

Java面试题--JVM大厂篇之深入解析G1 GC——革新Java垃圾回收机制

目录 引言: 正文&#xff1a; 一、G1 GC的区域划分及其作用 1. 伊甸园区&#xff08;Eden Region&#xff09; 2. 幸存者区&#xff08;Survivor Region&#xff09; 3. 老年代区&#xff08;Old Generation Region&#xff09; 二、区域划分的优势: 三、图片解析: 结…

java-数据结构与算法-02-数据结构-03-递归

1. 概述 定义 计算机科学中&#xff0c;递归是一种解决计算问题的方法&#xff0c;其中解决方案取决于同一类问题的更小子集 In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances…

动感剧场设计师:打造流畅而生动的三维动画和特效

三维画图软件是设计领域必不可少的工具&#xff0c;它可以创建非常精确的三维模型&#xff0c;能够帮助设计师直观感受产品的外观&#xff0c;随时进行编辑和调整。与传统的三维画图软件相比&#xff0c;的三维画图软件无需进行安装步骤&#xff0c;节省时间又节省内存。本文将…

自动驾驶AVM环视算法--540度全景的算法实现和exe测试demo

540度全景影像是什么 540度全景影像是在360度全景影像基础上的升级功能&#xff0c;它增加了更多的摄像头来收集周围的图像数据。通常&#xff0c;这些摄像头分布在车辆的更多位置&#xff0c;例如车顶、车底等&#xff0c;以便更全面地捕捉车辆周围的情况。在开启全景影像功能…

《Windows API每日一练》8.5 listbox控件

列表框是将一批文本字符串显示在一个具有滚动功能的方框中的控件。通过发送消息到列表框的窗口过程&#xff0c;程序可以添加或删除列表中的字符串。当列表框中的一个项目被选中时&#xff0c;列表框控件便发送 WM_COMMAND消息到其父窗口。然后父窗口确定哪个项目被选中。 本节…

Open3D 计算最近邻点的距离

目录 一、概述 1.1应用 1.2 应用实例 二、代码实现 2.1关键函数 2.2完整代码 2.3程序详解 三、实现效果 一、概述 在Open3D中&#xff0c;可以通过构建KD树&#xff08;K-D Tree&#xff09;来有效地进行最近邻搜索&#xff0c;从而计算点云中每个点的最近邻点距离。 …

Milvus lite start 及存储策略

背景 今天开始写下Milvus&#xff0c;为了方便&#xff0c;我直接使用的是 milvus-lite 版本&#xff0c;default 情况下&#xff0c;你可能不知道他到底将 db 存储到什么位置了。启动 default-server&#xff0c;看下Milvus 的start及存储逻辑 主逻辑 def start(self):sel…

STM32F446RE实现多通道ADC转换功能实现(DMA)

目录 概述 1 软硬件介绍 1.1 软件版本 1.2 ADC引脚介绍 2 STM32Cube配置项目 2.1 配置基本参数 2.2 ADC通道配置 2.3 DMA通道配置 3 项目代码介绍 3.1 自生成代码 3.2 ADC-DMA初始化 3.3 测试函数 3.4 ADC1、ADC2、ADC3轮询采集数据存贮格式 4 测试 源代码下载地…

小米MIX Fold 4折叠屏手机背面渲染图曝光

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 更多资源欢迎关注 7 月 3 日消息&#xff0c;消息源 Evan Blass 今天在 X 平台发布推文&#xff0c;分享了小米 MIX Fold 4 折叠屏手机的高清渲染图&#xff08;图片有加工成分在&#xff0c;最终零售版本可能会存在差异…

70.WEB渗透测试-信息收集- WAF、框架组件识别(10)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a; 易锦网校会员专享课 上一个内容&#xff1a;69.WEB渗透测试-信息收集- WAF、框架组件识别&#xff08;9&#xff09; 关于waf相应的识…

【C++修行之道】类和对象(四)运算符重载

目录 一、 运算符重载 函数重载和运算符重载有什么关系&#xff1f; 二、.*运算符的作用 三、运算符重载的正常使用 四、重载成成员函数 五、赋值运算符重载 1.赋值运算符重载格式 传值返回和引用返回 有没有办法不生成拷贝&#xff1f; 2. 赋值运算符只能重载成类的…

【Elasticsearch】开源搜索技术的演进与选择:Elasticsearch 与 OpenSearch

开源搜索技术的演进与选择&#xff1a;Elasticsearch 与 OpenSearch 1.历史发展2.OpenSearch 与 Elasticsearch 相同点3.OpenSearch 与 Elasticsearch 不同点3.1 版本大不同3.2 许可证不同3.3 社区不同3.4 功能不同3.5 安全性不同3.6 性能不同3.7 价格不同3.8 两者可相互导入 4…

unity知识点 专项四 一文彻底说清楚(锚点(anchor)、中心点(pivot)、位置(position)之间的关系)

一 概述 想要使UI控件在屏幕中达到正确的显示效果&#xff0c;比如自适应屏幕尺寸、固定边距等等&#xff0c;首先要理清楚几个基本概念和设置&#xff1a;锚点(anchor)、中心点(pivot)、位置(position)、UI缩放模式、父物件的transform设置 二 Anchor、Pivot与Position 2…

Javascript常见数据结构和设计模式

在JavaScript中&#xff0c;常见的数据结构包括两大类&#xff1a;原始数据类型&#xff08;Primitive Types&#xff09;和对象类型&#xff08;Object Types&#xff09;。对象类型又可以进一步细分为多种内置对象、数组、函数等。下面是一些JavaScript中常见的数据结构&…

Vulnhub靶场DC-6练习

目录 0x00 准备0x01 主机信息收集0x02 站点信息收集1. wordpress扫描2. wordlists字典爆破 0x03 漏洞查找与利用1. 漏洞查找2. CVE-2018-15877漏洞利用3. 反弹shell5. nmap提权 0x04 总结 0x00 准备 下载链接&#xff1a;https://download.vulnhub.com/dc/DC-6.zip 介绍&#…

近红外光谱脑功能成像(fNIRS):2.实验设计、指标计算与多重比较

一、实验设计的策略与方法 近红外光谱成像&#xff08;INIRS&#xff09;作为一种非侵入性脑功能成像技术&#xff0c;为研究大脑活动提供了一种高效、生态效度高的方法。然而&#xff0c;为了充分利用INIRS技术并确保实验结果的准确性和可靠性&#xff0c;研究者必须精心设计实…

高阶面试-dubbo的学习

SPI机制 SPI&#xff0c;service provider interface&#xff0c;服务发现机制&#xff0c;其实就是把接口实现类的全限定名配置在文件里面&#xff0c;然后通过加载器ServiceLoader去读取配置加载实现类&#xff0c;比如说数据库驱动&#xff0c;我们把mysql的jar包放到项目的…

【库架一体立体库】与【传统立体库】对比

导语 大家好&#xff0c;我是社长&#xff0c;老K。专注分享智能制造和智能仓储物流等内容。 随着冷链物流行业的快速发展&#xff0c;对于冷藏设施的要求也在不断提高。库架一体式智能立体冷藏库以其高效、节能、智能化的特点&#xff0c;正逐渐成为行业发展的新趋势。 分享一…