C++ 语法之数组指针

一维数组:

如果我们定义了一个一维数组,那么这个数组名,就是指向第一个数组元素的地址,也即,是整个数组分配的内存空间的首地址。

比如 int a[3]; 定义了一个包含三个元素的数组。因为一个int占4个字节,那么系统就会为这个数组分配12个字节的内存空间,用来存储这个数组。

可以运行下面代码来观察每个元素的地址:

int main() {int a[3];a[0] = 1;a[1] = 20;a[2] = 33;cout << "a的地址:" << a << "\n";for (int i = 0; i < 3; i++)cout << &a[i] << "\n";}

 运行结果:

可以看到内存的首地址是FAA8开始,注意这里的a和a[0]的地址是相等,因为它们都是代表数组的第一个地址。

然后依次加4个字节,FAAC,FAB0。

那么因此得出结论,数组名元素值每加1,它就会访问到下个四字节的地址(注意这里是根据类型的)。

那么a[3]就应该是FAB4,注意这里数组定义三个,下标是从0开始的,所以到2就结束了。

但我们依然可以通过a[3]访问到FAB4,只不过不是合法的,你不能写入,因为这不是属于你的内存。

如下例子:

#include <iostream>using namespace std;int main() {int a[3];a[0] = 1;a[1] = 20;a[2] = 33;cout << "a的地址:" << a << "\n";for (int i = 0; i < 3; i++)cout << &a[i] << "\n";cout << "a[3]的地址:" << &a[3] << "-------a[3]的值:" << a[3]; //访问a[3]的值,int类型4个字节}

结果: (注意访问a[3]是不合法的,只为示例使用)

 

可以看到a[3]的地址,是在a[2]的基础上加了个四个字节,这就是数组的规则。其实可以看作是指针的一种运用。

所以一维数组,我们可以像定义int 变量指针来定义数组指针,如下:

#include <iostream>using namespace std;int main() {int a[3];a[0] = 1;a[1] = 20;a[2] = 33;int* p = a;cout << *p << "\n" << p[1] << "\n" << *(p + 2);}

输出值: 

这里要特别说是*(p+2)这个访问,因为指针变量不像正常变量,比如int a;

a+1的话,它就会在a的值加1, 指针变量+1的意思,是在原来的地址上,增加该类型的字节数。这个是根据指针类型来决定的。比如int类型指针加1就是,4字节的+4,+2就是8。

可以通过输出地址值来查看,比如:

    int* p = a;int* p1 = p + 1;cout << p << "\n" << p1 << endl;

二维数组:

接下来说一下二维数组

 比如定义了一个int b[2][3],可以看成是什么,可以看成是我们定义了2个一维数组a[3]。我们分开来看。

那么b[0]就是一个内存地址,指向了第一个a[3]一维数组的地址。

而b[1]就是指向了第二个a[3]一维数组的首地址。

可以通过地址观察验证:

#include <iostream>using namespace std;int main() {int b[2][3];b[0][0] = 1;b[0][1] = 20;b[0][2] = 33;//输出二堆数组的每个地址:for (int i = 0; i < 2; i++)for (int j = 0; j < 3; j++)cout << "b[" << i << "][" << j << "]地址:" << &b[i][j]<< endl;//输出b[0]和b[1]地址:cout << "\n\nb[0]地址:" << b[0] << "\nb[1]地址:" << b[1] << endl;
}

 结果:

可以看到定义了一个二维数组,根据地址来看,在内存中是跟一维数组同样的分配方法,依次增加,每次四个字节,F5E8,F5EC,F5F0.....

只不过是以二维的层次来解读的,通过两个下标来控制,比如b[2][3]数组,你找到规则后,你就可以像一维数组那样推断出b[4][2]是哪个地址,访问的数据段是哪里(当然同上,这种访问也是不合法的,只为示例说明)

分解出来后:

那么b[0]即b[0][0]的的首地址,这个跟前面一维数组同样的原理,a跟a[0]地址一样。

而b[1]的地址,就是要加上12个字节,即F5F4,即b[1][0]首地址。

这个12个字节,就是包含3个整数的一维数组的跨度,这不难理解,跟前面都对应上了。

所以现在问题来了:

即现在二维数组b应该是什么样的指针指向它?它加1是多少?

(推理过程,如果不适请跳过直接看结果)

现在是二维数组b包含了两个一维数组a[3];

可以把a[3]数组看成是一种元素。

那么就是b包含了两个元素。也就是看成是一维数组b[0]=元素1 b[1]等于元素2。

所以指针就像是这样 元素 *p=b 也就是 int *p[3]=b; (此元素有三个整数所以3,前面加上int 类型)

又因为[]的运算级高于*号,所以int *p[3],你这里是定义了一个指针数组,相当定义了三个指针变量.

这里提一下指针数组和数组的指针 的区别:

那么相当于int a,b,c;   p[0]=&a;   p[1]=&b;  p[2]=&c;

指针数组是这样用的。

所以我们得给*p加上括号,让它成为一个二维数组的指针,即 int (*p)[3];

那么定义二维数组指针指向b就是 int (*p)[3]=b; 

而由此可以推断,b+1也就是p+1; 它的跨度是一个a[3]的跨度 12字节。

那么现在我们来实际应用验证一下:


#include <iostream>using namespace std;int main() {int b[2][3];b[0][0] = 1;b[0][1] = 20;b[0][2] = 33;b[1][1] = 66;b[1][2] = 88;//输出二堆数组的每个地址:for (int i = 0; i < 2; i++)for (int j = 0; j < 3; j++)cout << "b[" << i << "][" << j << "]地址:" << &b[i][j]<< endl;//输出b[0]和b[1]地址:cout << "\n\nb[0]地址:" << b[0] << "\nb[1]地址:" << b[1] << endl;//以上为观察对比数据int(*p)[3] = b;cout << "以下为二维数组指针p的用法:" << endl;//取地址的方法:cout << "*p是b[0]的地址,p是b的地址,所以相等(包括&b[0][0]):" << *p << "-------" << p << endl;//取值的方法cout << **p << endl;cout << (*p)[0] << endl;cout << (*p + 1)[1] << endl;cout << p[1][2] << endl;}

结果:

所以二维数组b,是不能用int *p这样来指向的,类型不匹配。

但int *p可以指向b[0],b[1],本质上 b[0]是个一维数组名。那么类推三维数组也是一样的,可以依次拆分,按逻辑分解。这里就不介绍了,感兴趣的可以自行实验,乃至更多维的。

下面补充一些字符串数组的说明(未完待续)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/37493.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

021-TCMalloc

TCMalloc 以下是对TCMalloc的技术调研报告&#xff0c;结合原理、代码实现、优化参数及性能对比的综合分析&#xff1a; 一、TCMalloc核心原理 架构分层 TCMalloc采用三级缓存结构&#xff0c;具体流程参考下图&#xff1a; ┌─────────────┐ ┌───…

华为网路设备学习-16 虚拟路由器冗余协议(VRRP)

VRRP是针对干线上三层网络设备&#xff08;如&#xff1a;路由器、防火墙等&#xff09;的网络虚拟化技术&#xff0c;提供冗余和状态监测等功能。确保在网络中的单点故障发生时&#xff0c;能够快速切换到备份设备&#xff0c;从而保证网络通信的连续性和可靠性。‌ VRRP通过…

【华为Pura先锋盛典】华为Pura X“阔折叠”手机发布:首次全面搭载HarmonyOS 5

文章目录 前言一、阔感体验&#xff0c;大有不同二、鸿蒙AI&#xff0c;大有智慧三、便携出行&#xff0c;大有不同四、首款全面搭载 HarmonyOS 5 的手机五、卓越性能&#xff0c;可靠安心六、红枫影像&#xff0c;大放光彩预热&#xff1a;鸿蒙电脑HarmonyOS 5 升级计划小结 前…

算法题(103):数独

审题&#xff1a; 本题需要我们找出数独的解&#xff0c;并打印出来 时间复杂度分析&#xff1a; 本题是9*9的数独格子&#xff0c;所以数据量小于25&#xff0c;可以使用2^n的算法 思路&#xff1a; 方法一&#xff1a;深度优先搜索 首先确定搜索及插入策略&#xff1a; 我们采…

sougou AI close

sougou AI close 全局禁用《AI 汪仔》 现在丝滑流畅很多了

二分查找上下界问题的思考

背景 最近在做力扣hot100中的二分查找题目时&#xff0c;发现很多题目都用到了二分查找的变种问题&#xff0c;即二分查找上下界问题&#xff0c;例如以下题目&#xff1a; 35. 搜索插入位置 74. 搜索二维矩阵 34. 在排序数组中查找元素的第一个和最后一个位置 它们不同于查找…

springboot实现调用百度ocr实现身份识别+二要素校验

一、技术选型 OCR服务&#xff1a;推荐使用百度AI 二、实现 1.注册一个服务 百度智能云控制台https://console.bce.baidu.com/ai-engine/ocr/overview/index?_1742309417611 填写完之后可以获取到app-id、apiKey、SecretKey这三个后面文件配置会用到 2、导入依赖 <!-- …

【数据分享】2000—2024年我国乡镇的逐月归一化植被指数(NDVI)数据(Shp/Excel格式)

之前我们分享过2000—2024年我国省市县三级逐月归一化植被指数&#xff08;NDVI&#xff09;数据&#xff0c;该数据是基于NASA定期发布的MOD13A3数据集中的月度NDVI栅格数据&#xff08;可查看之前的文章获悉详情&#xff09;计算得出。很多小伙伴拿到数据后反馈是否可以处理出…

背包问题——动态规划的经典问题包括01背包问题和完全背包问题

01背包问题&#xff1a;给你多个物品每个物品只能选一次&#xff0c;要你在不超过背包容积&#xff08;或者恰好等于&#xff09;的情况下选择装价值最大的组合。如果没有动态规划的基础其实是很难理解这个问题的&#xff0c;所以看这篇文章之前先去学习一下动态规划的基本思想…

AI Agent系列(七) -思维链(Chain of Thought,CoT)

AI Agent系列【七】 前言一、CoT技术详解1.1 CoT组成1.2 CoT的特点 二、CoT的作用三、CoT的好处四、CoT适用场景五、CoT的推理结构 前言 思维链(Chain of Thought,CoT)&#xff0c;思维链就是一系列中间的推理步骤(a series of intermediate reasoning steps)&#xff0c;通过…

Docker搭建Testlink教程

1.拉取镜像 打开终端输入命令&#xff1a; #拉取mariadb镜像 docker pull bitnami/mariadb #拉取testlink镜像 docker pull bitnami/testlink-archived 执行结果&#xff1a; 2.运行容器 打开终端输入命令&#xff1a; #创建容器网络 docker network create testlink #查…

考研c语言复习之栈

栈一般出选择题&#xff0c;队列选择题和大题都有 栈&#xff1a;只允许在一端 进行插入或删除操作的线性表即栈顶&#xff08;top) s.top-1时栈为空 向栈中插入元素 s.tops.top1;s.data[s.top]value; 这段代码可以用一行代码代替&#xff1a; s.data[s.top]value; 不懂i和…

C#里使用libxl来合并单元格的例子

操作EXCEL的文件格式是常用的功能&#xff0c; 通过不同的单元格的合并&#xff0c;可以生成不同的表格。 如下图所示&#xff1a; 采用libxl来创建上面的EXCEL&#xff0c;使用下面的代码来实现&#xff1a; private void button8_Click(object sender, EventArgs e) {var …

大屏技术汇集【目录】

Cesium 自从首次发布以来&#xff0c;经历了多个版本的迭代和更新&#xff0c;每个版本都带来了性能改进、新功能添加以及对现有功能的优化。以下是 Cesium 一些重要版本及其主要特点&#xff1a; 主要版本概述 Cesium 1.0 (2012年) 初始版本发布&#xff0c;确立了Cesium作为…

《深度学习》——YOLOv3详解

文章目录 YOLOv3简介YOLOv3核心原理YOLOv3改进YOLOv3网络结构 YOLOv3简介 YOLOv3&#xff08;You Only Look Once, version 3&#xff09;是一种先进的实时目标检测算法&#xff0c;由 Joseph Redmon 和 Ali Farhadi 开发。它在目标检测领域表现出色&#xff0c;具有速度快、精…

websocket中spring注入失效

一个null指针引发的思考 websocket中spring注入失效 一个null指针引发的思考场景代码SpringBoot入口类配置类websocket类 问题排查问题1&#xff1a;问题2&#xff1a; 反思解决方案一&#xff1a;方案二&#xff1a;方案三&#xff1a;方案四&#xff1a; 场景 首页有个webso…

QT开发(4)--各种方式实现HelloWorld

目录 1. 编辑框实现 2. 按钮实现 前面已经写过通过标签实现的了&#xff0c;所以这里就不写了&#xff0c;通过这两个例子&#xff0c;其他的也是同理 1. 编辑框实现 编辑框分为单行编辑框&#xff08;QLineEdit&#xff09;双行编辑框&#xff08;QTextEdit&#xff09;&am…

自由学习记录(45)

顶点片元着色器&#xff08;important&#xff09; 1.需要在Pass渲染通道中编写着色器逻辑 2.可以使用cG或HLSL两种shader语言去编写Shader逻辑 3.代码量较多&#xff0c;灵活性较强&#xff0c;性能消耗更可控&#xff0c;可以实现更多渲染细节 4.适用于光照处理较少&#xf…

内存管理(C++篇)

前言 我们在C语言阶段学习过内存管理的相关操作和知识&#xff0c;比如说malloc&#xff0c;calloc等内存开辟函数&#xff0c;但我们在学的时候会发现&#xff0c;使用这些函数还是相对来说比较冗杂的&#xff0c;那么今天我们来学习C语言中相关的内存管理操作&#xff0c;相信…

母婴电商企业案例:日事清驱动项目管理执行与OKR目标管理的流程自动化实践

一、关于科木电商 “小鹿豆豆”&#xff0c;一个年轻的品牌&#xff0c;近期在无论是淘宝、拼多多还是抖音电商平台&#xff0c;都成了亮眼的爆品。这个由绵阳科木电子商务有限公司推出的新品牌&#xff0c;以其高品质的保湿云柔巾迅速赢得了母婴护理市场的青睐&#xff0c;特别…