LLM-阿里云 DashVector + ModelScope 多模态向量化实时文本搜图实战总结

文章目录

  • 前言
  • 步骤
    • 图片数据Embedding入库
    • 文本检索
  • 完整代码

前言

本文使用阿里云的向量检索服务(DashVector),结合 ONE-PEACE多模态模型,构建实时的“文本搜图片”的多模态检索能力。整体流程如下:
image.png

  1. 多模态数据Embedding入库。通过ONE-PEACE模型服务Embedding接口将多种模态的数据集数据转化为高维向量。
  2. 多模态Query检索。基于ONE-PEACE模型提供的多模态Embedding能力,我们可以自由组合不同模态的输入,例如单文本、文本+音频、音频+图片等多模态输入,获取Embedding向量后通过DashVector跨模态检索相似结果。

前提条件

  • 开通灵积模型服务,并获得API-KEY:开通DashScope并创建API-KEY
  • 开通向量检索服务:请参见开通服务。
  • 创建向量检索服务API-KEY:请参见API-KEY管理。

环境准备

# 安装 dashscope 和 dashvector sdk
pip3 install dashscope dashvector# 显示图片
pip3 install Pillow

数据准备

说明
由于DashScope的ONE-PEACE模型服务当前只支持URL形式的图片、音频输入,因此需要将数据集提前上传到公共网络存储(例如 oss/s3),并获取对应图片、音频的url地址列表。

步骤

图片数据Embedding入库

我使用了阿里云的 OSS 保存了图片,通过 OSS Browser 界面获取图片外部可以访问的 URL:
image.png
image.png
这个 URL 应该也可以通过接口的方式获取,这个还没有研究,感兴趣的小伙伴可以尝试用接口批量获取下,获取这个 URL 的目的是为了让阿里云的 DashScope 服务能够读取到该图片进行 embedding 保存到 DashVector 向量数据库中。
获取到该URL 后,就将该URL 写入到我们的 imagenet1k-urls.txt 文件中,等会我们的代码会读取该文件进行嵌入:
image.png
执行嵌入的代码如下(我在后边会将完整代码和目录结构贴出,这里只贴出嵌入的代码):

    def index_image(self):# 创建集合:指定集合名称和向量维度, ONE-PEACE 模型产生的向量统一为 1536 维collection = self.vector_client.get(self.vector_collection_name)if not collection:rsp = self.vector_client.create(self.vector_collection_name, 1536)collection = self.vector_client.get(self.vector_collection_name)if not rsp:raise DashVectorException(rsp.code, reason=rsp.message)# 调用 dashscope ONE-PEACE 模型生成图片 Embedding,并插入 dashvectorwith open(self.IMAGENET1K_URLS_FILE_PATH, 'r') as file:for i, line in enumerate(file):url = line.strip('\n')input = [{'image': url}]result = MultiModalEmbedding.call(model=MultiModalEmbedding.Models.multimodal_embedding_one_peace_v1,input=input,api_key=os.environ["DASHSCOPE_API_KEY"],auto_truncation=True)if result.status_code != 200:print(f"ONE-PEACE failed to generate embedding of {url}, result: {result}")continueembedding = result.output["embedding"]collection.insert(Doc(id=str(i),vector=embedding,fields={'image_url': url}))if (i + 1) % 100 == 0:print(f"---- Succeeded to insert {i + 1} image embeddings")
  • 读取 IMAGENET1K_URLS_FILE_PATH中的图片 URL,然后执行请求 DashScope 请求,将我们的图片向量化存储。
  • 在插入向量数据库的时候带上了图片的 URL 作为向量属性。

执行完毕后可以通过向量检索服务控制台,查看下向量数据:
image.png
image.png

文本检索

通过文本检索向量数据库中的数据,我输入cat检索出三张(我们代码中设置的 topk=3)图片, 可以查看下效果,两张是猫的照片,但是有一张是狗的照片:
image.png
这是因为这张狗和猫是存在相似性的,接下来我们将topk设置为2,理论上就检测不出这个狗了,我们看下效果,果然就没有狗了:
image.png
之所以会出现狗,是因为我往向量库中存入了4张动物图片,2张猫的,2张狗的,如果我们的 topk 设置为3,就会多检测出一张狗的。

完整代码

multi_model.py文件如下:

import osimport dashscope
from dashvector import Client, Doc, DashVectorException
from dashscope import MultiModalEmbedding
from dashvector import Client
from urllib.request import urlopen
from PIL import Imageclass DashVectorMultiModel:def __init__(self):# 我们需要同时开通 DASHSCOPE_API_KEY 和 DASHVECTOR_API_KEYos.environ["DASHSCOPE_API_KEY"] = ""os.environ["DASHVECTOR_API_KEY"] = ""os.environ["DASHVECTOR_ENDPOINT"] = ""dashscope.api_key = os.environ["DASHSCOPE_API_KEY"]# 由于 ONE-PEACE 模型服务当前只支持 url 形式的图片、音频输入,因此用户需要将数据集提前上传到# 公共网络存储(例如 oss/s3),并获取对应图片、音频的 url 列表。# 该文件每行存储数据集单张图片的公共 url,与当前python脚本位于同目录下self.IMAGENET1K_URLS_FILE_PATH = "imagenet1k-urls.txt"self.vector_client = self.init_vector_client()self.vector_collection_name = 'imagenet1k_val_embedding'def init_vector_client(self):return Client(api_key=os.environ["DASHVECTOR_API_KEY"],endpoint=os.environ["DASHVECTOR_ENDPOINT"])def index_image(self):# 创建集合:指定集合名称和向量维度, ONE-PEACE 模型产生的向量统一为 1536 维collection = self.vector_client.get(self.vector_collection_name)if not collection:rsp = self.vector_client.create(self.vector_collection_name, 1536)collection = self.vector_client.get(self.vector_collection_name)if not rsp:raise DashVectorException(rsp.code, reason=rsp.message)# 调用 dashscope ONE-PEACE 模型生成图片 Embedding,并插入 dashvectorwith open(self.IMAGENET1K_URLS_FILE_PATH, 'r') as file:for i, line in enumerate(file):url = line.strip('\n')input = [{'image': url}]result = MultiModalEmbedding.call(model=MultiModalEmbedding.Models.multimodal_embedding_one_peace_v1,input=input,api_key=os.environ["DASHSCOPE_API_KEY"],auto_truncation=True)if result.status_code != 200:print(f"ONE-PEACE failed to generate embedding of {url}, result: {result}")continueembedding = result.output["embedding"]collection.insert(Doc(id=str(i),vector=embedding,fields={'image_url': url}))if (i + 1) % 100 == 0:print(f"---- Succeeded to insert {i + 1} image embeddings")def show_image(self, image_list):for img in image_list:# 注意:show() 函数在 Linux 服务器上可能需要安装必要的图像浏览器组件才生效# 建议在支持 jupyter notebook 的服务器上运行该代码img.show()def text_search(self, input_text):# 获取上述入库的集合collection = self.vector_client.get('imagenet1k_val_embedding')# 获取文本 query 的 Embedding 向量input = [{'text': input_text}]result = MultiModalEmbedding.call(model=MultiModalEmbedding.Models.multimodal_embedding_one_peace_v1,input=input,api_key=os.environ["DASHSCOPE_API_KEY"],auto_truncation=True)if result.status_code != 200:raise Exception(f"ONE-PEACE failed to generate embedding of {input}, result: {result}")text_vector = result.output["embedding"]# DashVector 向量检索rsp = collection.query(text_vector, topk=2)image_list = list()for doc in rsp:img_url = doc.fields['image_url']img = Image.open(urlopen(img_url))image_list.append(img)return image_listif __name__ == '__main__':a = DashVectorMultiModel()# 执行 embedding 操作a.index_image()# 文本检索text_query = "Traffic light"a.show_image(a.text_search(text_query))
  • 开通 DashScope 和 DashVector 的 API KEY 后替换上边的DASHSCOPE_API_KEY,DASHVECTOR_API_KEY,DASHVECTOR_ENDPOINT

代码目录结构如下,将 txt 文件和py 文件放在同级目录下:
image.png


补充说明

  • 使用本地图片:我是将图片上传至 OSS 的,也可以使用本地的图片文件,将 txt 中的文件路径替换为本地图片路径,如下:

    image.png

  • 如果使用本地图片的话,我们就得修改下上边的代码了,修改下边的代码:

    # 将 img = Image.open(urlopen(img_url)) 替换为下边的代码
    img = Image.open(img_url)
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/375267.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HTML5新增的input元素类型:number、range、email、color、date等

HTML5 大幅度地增加与改良了 input 元素的种类,可以简单地使用这些元素来实现 HTML5 之前需要使用 JavaScript 才能实现的许多功能。 到目前为止,大部分浏览器都支持 input 元素的种类。对于不支持新增 input 元素的浏览器,input 元素被统一…

采购订单列表根据条件设置行背景色

文章目录 采购订单列表根据条件设置行背景色Python实现Bos配置实现-列表条件格式化 采购订单列表根据条件设置行背景色 Python实现 python脚本 import clr clr.AddReference(System) clr.AddReference(Kingdee.BOS) clr.AddReference(Kingdee.BOS.Core) clr.AddReference(Sy…

spark shuffle写操作——SortShuffleWriter

写入的简单流程: 1.生成ExternalSorter对象 2.将消息都是插入ExternalSorter对象中 3.获取到mapOutputWriter,将中间产生的临时文件合并到一个临时文件 4.生成最后的data文件和index文件 可以看到写入的重点类是ExternalSorter对象 ExternalSorter 基…

高创新 | CEEMDAN-VMD-GRU-Attention双重分解+门控循环单元+注意力机制多元时间序列预测

目录 效果一览基本介绍模型设计程序设计参考资料 效果一览 基本介绍 高创新 | CEEMDAN-VMD-GRU-Attention双重分解门控循环单元注意力机制多元时间序列预测 本文提出一种基于CEEMDAN 的二次分解方法,通过样本熵重构CEEMDAN 分解后的序列,复杂序列通过VMD…

算法日常练习

对于这个题&#xff0c;如何处理同一个方向的问题&#xff0c;且对于同一组的如果间隔太大如何实现离散化 #include<bits/stdc.h> using namespace std;#define int long long typedef long long ll; map<pair<int,int>,vector<pair<ll,ll>>> mp…

小程序做自定义分享封面图,Canvas base64图片数据真机上不显示?【已解决】

首选说一下需求&#xff0c;做一个小程序分享&#xff0c;但是封面图要自定义&#xff0c;除了要有对应商品还有有背景图&#xff0c;商品名。类似这种 实现逻辑&#xff0c;把商品图和背景图&#xff0c;再加上价格和商品名用canvas 渲染出来 这是弄好之后的效果图&#xff0…

【简历】兰州某大学一本硕士:面试通过率基本是为0

注&#xff1a;为保证用户信息安全&#xff0c;姓名和学校等信息已经进行同层次变更&#xff0c;内容部分细节也进行了部分隐藏 简历说明 这是一个一本硕士的Java简历&#xff0c;那这个简历因为学校本身&#xff0c;它是一个一本的硕士&#xff0c;我们一般认为这一本硕士&a…

Riscv 架构的合规测试

为啥直接关注riscv-arch-test&#xff0c;是因为RISCOF 测试框架使用的是riscv-arch-test 1. The architectural test 架构测试是一个单一的测试&#xff0c;代表了可编译和运行的最小测试代码。它是用汇编代码编写的&#xff0c;其产品是test signature。一个架构测试可能由…

体育资讯小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;球员管理&#xff0c;教练管理&#xff0c;赛事日程管理&#xff0c;赛事类型管理&#xff0c;联赛积分榜管理 开发系统&#xff1a;Windows 架构模式&#xff1a;SSM JDK版本&am…

【前端项目笔记】10 项目优化上线

项目优化上线 目标&#xff1a;优化Vue项目部署Vue项目&#xff08;上线提供使用&#xff09; 项目优化 项目优化策略&#xff1a; 生成打包报告&#xff1a;根据生成的报告发现问题并解决第三方库启用CDN&#xff1a;提高首屏页面的加载效率Element-UI组件按需加载路由懒加…

java算法day12

java算法day12 199二叉树的右视图637二叉树的层平均值515 在每个树行中找最大值429 N叉树的层序遍历116 填充每个节点的下一个右侧节点指针 199 二叉树的右视图 这题还是层序遍历的板子&#xff0c;但是在处理上略有差异 这个题我一开始的想法就有误&#xff0c;因为我一开始…

通过手机供网、可修改WIFI_MAC的网络设备

一、修改WIFI mac&#xff08;bssid&#xff09; 取一根网线&#xff0c;一头连着设备黄色网口、一头连着电脑按住设备reset按键&#xff0c;插入电源线&#xff0c;观察到蓝灯闪烁后再松开reset按键 打开电脑浏览器&#xff0c;进入192.168.1.1&#xff0c;选择“MAC 地址修改…

彻底开源,免费商用,上海AI实验室把大模型门槛打下来

终于&#xff0c;业内迎来了首个全链条大模型开源体系。 大模型领域&#xff0c;有人探索前沿技术&#xff0c;有人在加速落地&#xff0c;也有人正在推动整个社区进步。 就在近日&#xff0c;AI 社区迎来首个统一的全链条贯穿的大模型开源体系。 虽然社区有LLaMA等影响力较大…

uniapp实现光标闪烁(配合自己的键盘)

前言 因为公司业务需要&#xff0c;所以我们... 演示 其实就是Chat自动打字效果 代码 键盘请看这篇文件 <template> <view class"list"><view class"title"><text>手机号码</text></view><view class"ty…

C#使用异步方式调用同步方法的实现方法

使用异步方式调用同步方法&#xff0c;在此我们使用异步编程模型&#xff08;APM&#xff09;实现 1、定义异步委托和测试方法 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading; using System.Threading.Task…

centos安装数据库同步工具sqoop并导入数据,导出数据,添加定时任务

目录 1.安装jdk 1.1上传jdk安装包到/opt目录下并解压 1.2解压 1.3配置环境变量 2.安装hadoop 2.1.下载hadoop 2.2.解压hadoop 2.3配置环境变量 3.安装sqoop 3.1下载 3.2解压 3.3下载依赖包并复制到指定位置 3.3.1下载commons-lang-2.6-bin.tar.gz 3.3.2将mysql-c…

STM32 - 内存分区与OTA

最近搞MCU&#xff0c;发现它与SOC之间存在诸多差异&#xff0c;不能沿用SOC上一些技术理论。本文以STM L4为例&#xff0c;总结了一些STM32 小白入门指南。 标题MCU没有DDR&#xff1f; 是的。MCU并没有DDR&#xff0c;而是让代码存储在nor flash上&#xff0c;临时变量和栈…

Windows环境安装Redis和Redis Desktop Manager图文详解教程

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl Redis概述 Redis是一个开源的高性能键值对数据库&#xff0c;以其卓越的读写速度而著称&#xff0c;广泛用于数据库、缓存和消息代理。它主要将数据存储在内存中&#xff0…

Codeforces Round #956 (Div. 2) and ByteRace 2024(A~D题解)

这次比赛也是比较吃亏的&#xff0c;做题顺序出错了&#xff0c;先做的第三个&#xff0c;错在第三个数据点之后&#xff0c;才做的第二个&#xff08;因为当时有个地方没检查出来&#xff09;所以这次比赛还是一如既往地打拉了 那么就来发一下题解吧 A. Array Divisibility …

使用pip或conda离线下载安装包,使用pip或conda安装离线安装包

使用pip或conda离线下载安装包&#xff0c;使用pip或conda安装离线安装包 一、使用pip离线下载安装包1. 在有网络的机器上下载包和依赖2. 传输离线安装包 二、在目标机器上离线安装pip包三、使用conda离线下载安装包1. 在有网络的机器上下载conda包2. 传输conda包或环境包3. 在…