论文学习_An Empirical Study of Deep Learning Models for Vulnerability Detection

1. 引言

研究背景:近年来,深度学习漏洞检测工具取得了可喜的成果。最先进的模型报告了 0.9 的 F1 分数,并且优于静态分析器。结果令人兴奋,因为深度学习可能会给软件保障带来革命性的变化。因此,IBM、谷歌和亚马逊等行业公司非常感兴趣,并投入巨资开发此类工具和数据集。

现存问题:尽管深度学习漏洞检测在前景上很有潜力,但目前尚未达到计算机视觉和自然语言处理的水平。目前大部分研究重点是尝试新兴的深度学习模型,并将其应用于类似 Devign 或 MSR 数据集的数据集。然而,对于模型本身,我们了解甚少,例如,模型能否有效处理哪种类型的程序,我们是否应为每种漏洞类型建立模型,或者应该为所有漏洞类型构建一个统一模型,好的训练数据集是什么样的,以及模型在做出决策时使用了哪些信息。了解这些问题的答案可以帮助我们更好地开发、调试和应用模型。然而,考虑到深度学习的黑盒特性,这些问题很难回答。论文的目的不是提供这些问题的完整解决方案,而是探讨这些目标。

科学问题:在本文中,论文对一系列最先进的深度学习漏洞检测模型进行了调查和重现,并建立了研究问题,以便理解这些模型,旨在从中汲取经验教训和指导,以更好地设计和调试未来的模型。论文构建了研究问题,并将其分为三个领域,即模型能力训练数据模型解释。具体来说,论文的首要目标是了解深度学习在漏洞检测问题中的处理能力,特别关注以下研究问题:

  • 问题 1:不同模型在漏洞检测上是否能达成共识?不同模型之间存在哪些差异?
  • 问题 2:某些类型的漏洞是否更容易检测? 应该为每种类型的漏洞构建模型,还是应该构建一个可以检测所有漏洞的模型?
  • 问题 3:是否存在一些模型难以预测的代码模式?如果存在这种代码模式,这是怎样的一种代码模式?

论文的第二项研究重点是训练数据。论文的目标是了解训练数据的规模和组成是否以及如何影响模型性能。具体来说,论文构建了以下研究问题:

  • 问题 4:增加数据集大小是否有助于提高漏洞检测的模型性能?
  • 问题 5:训练数据集中的项目组成如何影响模型的性能?

最后,论文的第三个研究领域是模型解释。 论文使用SOTA模型解释工具来调查:

  • 问题 6:模型用于预测的源代码信息是什么? 模型对重要特征是否一致?

研究内容:为了回答上述问题,论文调查了最先进的深度学习模型,并在它们的原始数据集上成功重现了 11 个模型。这些模型采用了不同的深度学习架构,例如 GNN、RNN、LSTM、CNN 和 Transformers。为了比较这些模型,论文设法让 9 个模型与 Devign 和 MSR 这两个流行的数据集一起运行。论文选择这两个数据集的原因是:(1) 这两个数据集都包含真实世界的项目和漏洞;(2) 大多数论文中的模型都是使用 Devign 数据集进行评估和调优的;(3) MSR 数据集包含 310 个项目,其中数据有漏洞类型的注释,这对我们的研究问题至关重要。通过精心设计的实验和对威胁的考虑,论文发现了 6 个研究问题的结果。总的来说,论文的研究贡献包括:

  • 贡献 1:论文对深度学习漏洞检测模型进行了全面调查。
  • 贡献 2:论文提供了一个代码仓库,其中包含 11 个具有各种研究设置的 SOTA 深度学习框架的训练模型和数据集。
  • 贡献 3:论文设计了 6 个科学问题来理解模型能力、训练数据和模型解释。
  • 贡献 4:论文构建了研究并通过实验获得了所提科学问题的结果。
  • 贡献 5:论文准备了有趣的例子和数据,以进一步研究模型的可解释性。

2. 模型复现

为了收集最先进的深度学习模型,论文研究了 2018 年至 2022 年的论文,并参考了微软的 CodeXGLUE 排行榜以及 IBM 的缺陷检测 D2A 排行榜。论文使用了所有可获取的开源模型,并成功复现了 11 个模型。论文的数据复制包中包含了完整的模型列表,以及我们未能重现某些模型的原因。

如上表所示,复现的模型涵盖了各种深度学习架构。Devign 和 ReVeal 在属性图上使用了 GNN,融合了控制流、数据依赖性和 AST。ReGVD 在 token 上采用了 GNN。Code2Vec 在 AST 上使用了多层感知器 (MLP)。VulDeeLocator 和 SySeVR 则是基于 RNN 和 Bi-LSTM 的序列模型。最近的深度学习检测采用了预训练的 Transformer,包括 CodeBERT、VulBERTa-CNN、VulBERTa-MLP、PLBART 和 LineVul。

针对论文的研究问题,论文选用了 Devign 和 MSR 数据集。论文研究了这 11 个模型在其原始论文中使用的数据集,这些数据集如上表所示。论文发现 Devign 数据集已被用于对 8 个模型进行评估和调整。该数据集是一个平衡数据集,包含大致相同数量的易受攻击和非易受攻击的示例,总共有 27,318 个数据点(每个示例也被称为一个数据点)。LineVul 使用了 MSR 数据集,这是一个近期可用的数据集。该数据集是不平衡的,包含 10,900 个易受攻击的示例和 177,736 个非易受攻击的示例。这些示例具有它们的源项目以及常见弱点枚举(CWE)条目,显示了漏洞的类型。论文利用这些数据集特征来制定一些研究问题。

论文根据原始数据集和设置复现了模型的结果,如上表所示。其中,A、P、R、F 列代表深度学习漏洞检测中常用的指标,包括准确率、精确率、召回率和 F1 分数。论文的复现结果与原始论文相比,通常计算误差在 2% 以内。特殊情况是 ReVeal,作者确认我们的结果纠正了原始论文中的数据泄漏错误,以及 Devign,论文使用了第三方复现代码(Chakaborthy 等人发布的),因为原始 Devign 代码并未开源。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/376521.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序如何实现登陆和注册功能?

👨‍💻个人主页:开发者-曼亿点 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 曼亿点 原创 👨‍💻 收录于专栏&#xff1a…

最新 Kubernetes 集群部署 + Containerd容器运行时 + flannel 网络插件(保姆级教程,最新 K8S 1.28.2 版本)

资源列表 操作系统配置主机名IP所需插件CentOS 7.92C4Gk8s-master192.168.60.143flannel-cni-plugin、flannel、coredns、etcd、kube-apiserver、kube-controller-manager、kube-proxy、 kube-scheduler 、containerd、pause 、crictlCentOS 7.92C4Gk8s-node01192.168.60.144f…

JVM:运行时数据区

文章目录 一、总览二、程序计数器1、介绍2、程序计数器在运行中会出现内存溢出吗? 三、栈1、介绍2、栈帧的组成部分(1)局部变量表(2)操作数栈(3)帧数据(3)栈内存溢出&…

everything搜索不到任何文件-设置

版本: V1.4.1.1024 (x64) 问题:搜索不到任何文件 click:[工具]->[选项]->下图所示 将本地磁盘都选中包含

mavsdk_server安卓平台编译

1.下载好mavsdk并进入mavsdk目录 2.生成docker安卓平台文件 docker run --rm dockcross/android-arm64 >./dockcross-android-arm64 3.生成makefile ./dockcross-android-arm64 cmake -DCMAKE_BUILD_TYPERelease -DBUILD_MAVSDK_SERVERON -DBUILD_SHARED_LIBSOFF -Bbuild/…

【学习笔记】4、组合逻辑电路(下)

接前文《【学习笔记】4、组合逻辑电路(上)》 4.4.5 算术运算电路 1. 半加器和全加器 半加器和全加器是算术运算电路中的基本单元。半加器和全加器是1位相加的组合逻辑电路。 (1)半加器 半加器:只考虑两个加数本身,不考虑低位进…

SuiteCRM SQL注入漏洞复现(CVE-2024-36412)

0x01 产品简介 SuiteCRM是一款屡获殊荣的企业级开源客户关系管理系统,它具有强大的功能和高度的可定制性,且完全免费。 0x02 漏洞概述 SuiteCRM存在SQL注入漏洞,未经身份验证的远程攻击者可以通过该漏洞拼接执行SQL注入语句,从…

C++20中的consteval说明符

在C20中,立即函数(immediate function)是指每次调用该函数都会直接或间接产生编译时常量表达式(constant expression)的函数。这些函数在其返回类型前使用consteval关键字进行声明。 立即函数是constexpr函数,具体情况取决于其要求。与constexpr相同&…

光学遥感图像中的目标检测技术全面综述,以及新的大规模基准数据集DIOR介绍。

原版论文:https://arxiv.org/abs/1909.00133 数据获取地址:https://www.dilitanxianjia.com/15648/ 获取全文可以入下图所示进行操作: 这篇文章主要对光学遥感图像中的目标检测技术进行了全面的综述,并提出了一个新的大规模基准…

神经网络以及简单的神经网络模型实现

神经网络基本概念: 神经元(Neuron): 神经网络的基本单元,接收输入,应用权重并通过激活函数生成输出。 层(Layer): 神经网络由多层神经元组成。常见的层包括输入层、隐藏层…

Camunda如何通过外部任务与其他系统自动交互

文章目录 简介流程图外部系统pom.xmllogback.xml监听类 启动流程实例常见问题Public Key Retrieval is not allowed的解决方法java.lang.reflect.InaccessibleObjectException 流程图xml 简介 前面我们已经介绍了Camunda的基本操作、任务、表: Camunda组件与服务与…

浏览器插件使用方法

如果我们经常使用的浏览器不是edge或者是chrome浏览器时,需要在浏览器安装插件时,无法获取插件以及不知道如何安装插件,本文章教你如何获取以及安装使用。 获取方法 第一种方法(推荐) 无需“魔法”,即可访问…

多表联合的查询(实例)、对于前端返回数据有很多表,可以分开操作、debug调试教程

2024.7.13 一、 对于多表的更深层的认识1. 认识2. 多表联合查询的列子:3. 对于多表查询的进一步认识4. 在实现功能的时候,原本对于省市县这样的表,对于项目的要求,是直接全部查询出来,然后开始使用,但我想着…

PDF 中图表的解析探究

PDF 中图表的解析探究 0. 引言1. 开源方案探究 0. 引言 一直以来,对文档中的图片和表格处理都非常有挑战性。这篇文章记录一下最近工作上在这块的探究。图表分为图片和表格,这篇文章主要记录了对表格的探究。还有,我个人主要做日本项目&…

如何解决VMware 安装Windows10系统出现Time out EFI Network...

一、问题描述 使用VMware 17 安装windows10出现如下图所示Time out EFI Network… Windows10镜像为微软官方下载的ISO格式镜像; 二、问题分析 VMware 17 默认的固件类型是UEFI(E),而微软官网下载的Windows10 ISO格式镜像不支持UEFI(E),支…

Android APT实战

Android开发中,注解平时我们用的比较多,也许我们会比较好奇,注解的背后是如何工作的,这篇文章帮大家一步步创建一个简单的注解处理器。 简介 APT(Annotation Processing Tool)即注解处理器,在编译的时候可以处理注解然后搞一些事情,也可以在编译时生成一些文件之类的。…

网络安全——防御课实验二

在实验一的基础上,完成7-11题 拓扑图 7、办公区设备可以通过电信链路和移动链路上网(多对多的NAT,并且需要保留一个公网IP不能用来转换) 首先,按照之前的操作,创建新的安全区(电信和移动)分别表示两个外网…

nginx的四层负载均衡实战

目录 1 环境准备 1.1 mysql 部署 1.2 nginx 部署 1.3 关闭防火墙和selinux 2 nginx配置 2.1 修改nginx主配置文件 2.2 创建stream配置文件 2.3 重启nginx 3 测试四层代理是否轮循成功 3.1 远程链接通过代理服务器访问 3.2 动图演示 4 四层反向代理算法介绍 4.1 轮询&#xff0…

大数据基础:Hadoop之MapReduce重点架构原理

文章目录 Hadoop之MapReduce重点架构原理 一、MapReduce概念 二、MapReduce 编程思想 2.1、Map阶段 2.2、Reduce阶段 三、MapReduce处理数据流程 四、MapReduce Shuffle 五、MapReduce注意点 六、MapReduce的三次排序 Hadoop之MapReduce重点架构原理 一、MapReduce概…

在word中删除endnote参考文献之间的空行

如图,在References中,每个文献之间都有空行。不建议手动删除。打开Endnote。 打开style manager 删除layout中的换行符。保存,在word中更新参考文献即可。