项目收获总结--本地缓存方案选型及使用缓存的坑

本地缓存方案选型及使用缓存的坑

        • 一、摘要
        • 二、本地缓存
        • 三、本地缓存实现方案
          • 3.1 自己编程实现一个缓存
          • 3.2 基于 Guava Cache 实现本地缓存
          • 3.3 基于 Caffeine 实现本地缓存
          • 3.4 基于 Encache 实现本地缓存
          • 3.5 小结
        • 四、使用缓存的坑
          • 4.1 缓存穿透
          • 4.2 缓存击穿
          • 4.3 缓存雪崩
          • 4.4 数据不一致
          • 4.5 大key问题
          • 4.6 热key问题
          • 4.7 命中率问题

一、摘要

在互联网公司面试时,说到缓存,面试官基本上会绕不开的几个话题:项目中哪些地方用到了缓存?为什么要使用缓存?怎么使用它的?引入缓存后会带来哪些问题?
在这里插入图片描述

引入缓存,其实主要有两个用途:高性能、高并发

性能体现在引入缓存之前,以商城网站为例,频繁的从数据库里面获取商品数据,也就需要频繁执行SQL等待结果,若数据量很大同时请求频次逐渐增高,响应就逐渐缓慢;引入缓存之后,将数据库里面查询出来的商品数据信息存入缓存,需要时直接从缓存服务获取结果,效率极大提升。

并发体现在引入缓存之前,以 MySQL数据库为例,单台机器一秒内的请求次数到达 2000 之后就会开始报警;引入缓存之后,比如以 Redis 缓存服务器为例,单台机器一秒内的请求次数支持 110000 次,两者支持的并发量完全不是一个数量级的。

缓存和数据库效率差距大的根本原因:缓存数据存储在内存,数据库数据存储在磁盘,
而计算机中内存的数据读写性能远超磁盘的读写性能。但电脑重启后内存数据易丢失,而磁盘数据不易丢失。

所以数据存储方案不同,造就不同的实践用途。接下来就浅谈缓存,主要是本地缓存的使用。

二、本地缓存

从缓存面向的对象不同,缓存分为:本地缓存分布式缓存和多级缓存
(1)本地缓存:在单个计算机服务实例中,直接把数据缓存到内存中进行使用。
(2)分布式缓存:将一个计算机服务,同时在多台计算机里部署,所需数据无法共享(比如session会话)而引入一个独立部署的缓存服务来连接多台服务器的技术实践方案。
(3)多级缓存:在实际的业务中,本地缓存和分布式缓存会同时结合进行使用,当收到访问某个数据的操作时,会优先从本地缓存服务(一级缓存)查询,如果没有,再从分布式缓存服务(二级缓存)里面获取,如果也没有,最后再从数据库里面获取;从数据库查询完成之后,在依次更新分布式缓存服务、本地缓存服务的技术实践方案。

三、本地缓存实现方案

缓存关注点:第一是内存持久化;第二是支持缓存的数据自动过期清除。

3.1 自己编程实现一个缓存

对于简单的数据缓存,完全可以自行编写一套缓存服务。实现思路很简单:采用ConcurrentHashMap作为缓存数据存储服务,然后开启一个定时调度,每隔500毫秒检查一下过期的缓存数据,然后清除。
首先创建一个缓存实体类:

public class CacheEntity {/*** 缓存键*/private String key;/*** 缓存值*/private Object value;/*** 过期时间*/private Long expireTime;//...set、get
}

接着,创建一个缓存操作工具类CacheUtils:

public class CacheUtils {/*** 缓存数据*/private final static Map<String, CacheEntity> CACHE_MAP = new ConcurrentHashMap<>();/*** 定时器线程池,用于清除过期缓存*/private static ScheduledExecutorService executor = Executors.newSingleThreadScheduledExecutor();static {// 注册一个定时线程任务,服务启动1秒之后,每隔500毫秒执行一次executor.scheduleAtFixedRate(new Runnable() {@Overridepublic void run() {// 清理过期缓存clearCache();}},1000,500,TimeUnit.MILLISECONDS);}/*** 添加缓存* @param key    缓存键* @param value  缓存值*/public static void put(String key, Object value){put(key, value, 0);}/*** 添加缓存* @param key    缓存键* @param value  缓存值* @param expire 缓存时间,单位秒*/public static void put(String key, Object value, long expire){CacheEntity cacheEntity = new CacheEntity().setKey(key).setValue(value);if(expire > 0){Long expireTime = System.currentTimeMillis() + Duration.ofSeconds(expire).toMillis();cacheEntity.setExpireTime(expireTime);}CACHE_MAP.put(key, cacheEntity);}/*** 获取缓存* @param key* @return*/public static Object get(String key){if(CACHE_MAP.containsKey(key)){return CACHE_MAP.get(key).getValue();}return null;}/*** 移除缓存* @param key*/public static void remove(String key){if(CACHE_MAP.containsKey(key)){CACHE_MAP.remove(key);}}/*** 清理过期的缓存数据*/private static void clearCache(){if(CACHE_MAP.size() > 0){return;}Iterator<Map.Entry<String, CacheEntity>> iterator = CACHE_MAP.entrySet().iterator();while (iterator.hasNext()){Map.Entry<String, CacheEntity> entry = iterator.next();if(entry.getValue().getExpireTime() != null && entry.getValue().getExpireTime().longValue() > System.currentTimeMillis()){iterator.remove();}}}
}

最后,创建测试main方法:

/ 写入缓存数据,过期时间为3CacheUtils.put("userName", "张三", 3);// 读取缓存数据
Object value1 = CacheUtils.get("userName");
System.out.println("第一次查询结果:" + value1);// 停顿4秒
Thread.sleep(4000);// 读取缓存数据
Object value2 = CacheUtils.get("userName");
System.out.println("第二次查询结果:" + value2);

结果:

第一次查询结果:张三
第二次查询结果:null
3.2 基于 Guava Cache 实现本地缓存

Guava 是 Google 团队开源的一款 Java 核心增强库,包含集合、并发原语、缓存、IO、反射等工具箱,性能和稳定性上都有保障,应用十分广泛。而Guava Cache 很强大,支持很多特性如下:

支持最大容量限制
支持两种过期删除策略(插入时间和读取时间)
支持简单的统计功能
基于 LRU 算法实现

首先pom.xml引入guava依赖:

<!--guava-->
<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>31.1-jre</version>
</dependency>

使用:

// 创建一个缓存实例
Cache<String, String> cache = CacheBuilder.newBuilder()// 初始容量.initialCapacity(5)// 最大缓存数,超出淘汰.maximumSize(10)// 过期时间.expireAfterWrite(3, TimeUnit.SECONDS).build();// 写入缓存数据
cache.put("userName", "张三");// 读取缓存数据
String value1 = cache.get("userName", () -> {// 如果key不存在,会执行回调方法return "key已过期";
});
System.out.println("第一次查询结果:" + value1);// 停顿4秒
Thread.sleep(4000);// 读取缓存数据
String value2 = cache.get("userName", () -> {// 如果key不存在,会执行回调方法return "key已过期";
});
System.out.println("第二次查询结果:" + value2);

输出结果:

第一次查询结果:张三
第二次查询结果:key已过期
3.3 基于 Caffeine 实现本地缓存

Caffeine 是基于 java8 实现的新一代缓存工具,缓存性能接近理论最优,可以看作是 Guava Cache 的增强版,功能上两者类似,不同的是 Caffeine 采用了一种结合 LRU、LFU 优点的算法:W-TinyLFU,在性能上有明显的优越性。
首先pom.xml引入caffeine依赖:

<!--caffeine-->
<dependency><groupId>com.github.ben-manes.caffeine</groupId><artifactId>caffeine</artifactId><version>2.9.3</version>
</dependency>

使用:

// 创建一个缓存实例
Cache<String, String> cache = Caffeine.newBuilder()// 初始容量.initialCapacity(5)// 最大缓存数,超出淘汰.maximumSize(10)// 设置缓存写入间隔多久过期.expireAfterWrite(3, TimeUnit.SECONDS)// 设置缓存最后访问后间隔多久淘汰,实际很少用到//.expireAfterAccess(3, TimeUnit.SECONDS).build();// 写入缓存数据
cache.put("userName", "张三");// 读取缓存数据
String value1 = cache.get("userName", (key) -> {// 如果key不存在,会执行回调方法return "key已过期";
});
System.out.println("第一次查询结果:" + value1);// 停顿4秒
Thread.sleep(4000);// 读取缓存数据
String value2 = cache.get("userName", (key) -> {// 如果key不存在,会执行回调方法return "key已过期";
});
System.out.println("第二次查询结果:" + value2);

输出结果:

第一次查询结果:张三
第二次查询结果:key已过期
3.4 基于 Encache 实现本地缓存

Encache 是一个纯 Java 的进程内缓存框架,具有快速、精干等特点,是 Hibernate 中默认的 CacheProvider。

同 Caffeine 和 Guava Cache 相比,Encache 的功能更加丰富,扩展性更强,特性如下:

支持多种缓存淘汰算法,包括 LRULFUFIFO
缓存支持堆内存储、堆外存储、磁盘存储(支持持久化)三种
支持多种集群方案,解决数据共享问题

首先pom.xml引入ehcache依赖:

<!--ehcache-->
<dependency><groupId>org.ehcache</groupId><artifactId>ehcache</artifactId><version>3.9.7</version>
</dependency>

使用:

/*** 自定义过期策略实现*/
public  class CustomExpiryPolicy<K, V> implements ExpiryPolicy<K, V> {private final Map<K, Duration> keyExpireMap = new ConcurrentHashMap();public Duration setExpire(K key, Duration duration) {return keyExpireMap.put(key, duration);}public Duration getExpireByKey(K key) {return Optional.ofNullable(keyExpireMap.get(key)).orElse(null);}public Duration removeExpire(K key) {return keyExpireMap.remove(key);}@Overridepublic Duration getExpiryForCreation(K key, V value) {return Optional.ofNullable(getExpireByKey(key)).orElse(Duration.ofNanos(Long.MAX_VALUE));}@Overridepublic Duration getExpiryForAccess(K key, Supplier<? extends V> value) {return getExpireByKey(key);}@Overridepublic Duration getExpiryForUpdate(K key, Supplier<? extends V> oldValue, V newValue) {return getExpireByKey(key);}
}
public static void main(String[] args) throws InterruptedException {String userCache = "userCache";// 自定义过期策略CustomExpiryPolicy<Object, Object> customExpiryPolicy = new CustomExpiryPolicy<>();// 声明一个容量为20的堆内缓存配置CacheConfigurationBuilder configurationBuilder = CacheConfigurationBuilder.newCacheConfigurationBuilder(String.class, String.class, ResourcePoolsBuilder.heap(20)).withExpiry(customExpiryPolicy);// 初始化一个缓存管理器CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()// 创建cache实例.withCache(userCache, configurationBuilder).build(true);// 获取cache实例Cache<String, String> cache = cacheManager.getCache(userCache, String.class, String.class);// 获取过期策略CustomExpiryPolicy expiryPolicy = (CustomExpiryPolicy)cache.getRuntimeConfiguration().getExpiryPolicy();// 写入缓存数据cache.put("userName", "张三");// 设置3秒过期expiryPolicy.setExpire("userName", Duration.ofSeconds(3));// 读取缓存数据String value1 = cache.get("userName");System.out.println("第一次查询结果:" + value1);// 停顿4秒Thread.sleep(4000);// 读取缓存数据String value2 = cache.get("userName");System.out.println("第二次查询结果:" + value2);
}

输出结果:

第一次查询结果:张三
第二次查询结果:null
3.5 小结

在这里插入图片描述
对于本地缓存的技术选型,推荐采用 Caffeine,性能上遥遥领先。功能与Guava 类似,而Encache虽支持持久化和集群,但不如分布式缓存中间件Redis。

四、使用缓存的坑

在项目中经常会使用缓存,但用不好的话坑也挺多的:
在这里插入图片描述

4.1 缓存穿透

用户请求的id在缓存中不存在恶意用户伪造不存在的id发起请求,每次从缓存中都查不到数据,而需要查询数据库,同时数据库中也没有查到该数据,也没法放入缓存。也就是每次这个用户请求过来的时候,都要查询一次数据库。
很显然,缓存根本没起作用,好像被穿透一样,每次都会去访问数据库,而直接请求数据库数量非常多,数据库可能因为扛不住压力而崩溃。
解决方案: 缓存空值
当某个用户id在缓存中查不到,在数据库中也查不到时,也要将该用户id缓存起来,只不过值是空的。这样后面的请求,再拿相同的用户id发起请求时,就能从缓存中获取空数据,直接返回而无需再去查数据库。
比如redis:

redisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
4.2 缓存击穿

在访问热点数据时,该热点在缓存中过期失效,导致这些大量请求短时间都直接怼到数据库,可能会造成瞬间数据库压力过大,而直接挂掉。
解决方案:
(1)加锁。在访问数据库时加锁,防止多个相同keyId的请求同时访问数据库。

try {String result = jedis.set(keyId, requestId, "NX", "PX", expireTime);if ("OK".equals(result)) {return queryInfoById(keyId);}
} finally{unlock(keyId,requestId);
}  
return null;

(2)自动续期
在key快要过期之前,用job给指定key自动续期。比如redis使用lua脚本。
(3)永久有效
对于很多热门key,其实是可以不用设置过期时间,让其永久有效的。

4.3 缓存雪崩

而缓存雪崩是缓存击穿的升级版,缓存击穿说的是某一个热门key失效了,而缓存雪崩说的是有多个热门key同时失效。
缓存雪崩目前有两种:

1)有大量的热门缓存,同时失效。会导致大量的请求,访问数据库。而数据库很有可能因为扛不住压力,而直接挂掉。
(2)缓存服务器down机,可能是机器硬件问题,或者机房网络问题。总之,造成了整个缓存的不可用。

解决方案:
(1) 过期时间加随机数,不要设置相同的过期时间,可以在设置的过期时间基础上,再加个1~60秒的随机数。

实际过期时间 = 过期时间 + 1~60秒的随机数

(2)保证高可用
比如:如果使用了redis,可以使用哨兵模式,或者集群模式,避免出现单节点故障导致整个redis服务不可用的情况。

(3)服务降级
需要配置一些默认的兜底数据。程序中有个全局开关,比如有10个请求在最近一分钟内,从redis中获取数据失败,则全局开关打开。后面的新请求,就直接从配置中心中获取默认的数据。

4.4 数据不一致

数据库和缓存(比如:redis)双写数据一致性问题,是一个跟开发语言无关的公共问题。尤其高并发场景这个问题尤为严重。
解决方案
先写数据库,再删缓存!
先写数据库,再删缓存!
先写数据库,再删缓存!
除非同时满足:

缓存刚好自动失效。
读请求从数据库查出旧值,更新缓存的耗时,比写请求写数据库,并且删除缓存的还长。

才会出现数据不一致,但系统同时满足上述两个条件的概率非常小。

4.5 大key问题

在使用缓存的时候,特别是Redis,经常会遇到大key问题(缓存中单个key的value值过大)。
项目经历:

在一个风控项目中曾开发过一个分类树查询接口,系统刚上线时,数据量少,在Redis中定义的key比较小,
我在做系统设计时,也没考虑到这个问题。系统运行很长一段时间也没有问题。但随着时间的推移,用户的数据越来越多,
用户的购买行为分类树也越来越大,慢慢形成大key问题。后来某一天之后发现,线上查询客户画像接口耗时越来越长,
追查原因,发现单个用户分类数据涨到上万个,导致该接口出现性能问题,追查发现分类树json串已经接近16MB,而引发大key问题导致的。

解决方案:
(1)缩减字段名
优化在Redis中存储数据的大小,首先需要对数据进行瘦身。只保存需要用到的字段:

@AllArgsConstructor
@Data
public class Category {private Long id;private String name;private Long parentId;private Date inDate;private Long inUserId;private String inUserName;private List<Category> children;
}

这个分类对象中inDate、inUserId和inUserName字段是可以不用保存的。
然后,修改自动名称:

@AllArgsConstructor
@Data
public class Category {/*** 分类编号*/@JsonProperty("i")private Long id;/*** 分类层级*/@JsonProperty("l")private Integer level;/*** 分类名称*/@JsonProperty("n")private String name;/*** 父分类编号*/@JsonProperty("p")private Long parentId;/*** 子分类列表*/@JsonProperty("c")private List<Category> children;
}

由于在一万多条数据中,每条数据的字段名称是固定的,他们的重复率太高,由此,可以在json序列化时,改成一个简短的名称,以便于返回更少的数据大小。

(2)压缩数据
由于在Redis中保存的key/value,其中的value我是存储json格式的字符串,但是占用内存很大,所以需要对存储的数据做压缩。

由于RedisTemplate支持,value保存byte数组,因此先将json字符串数据用GZip工具类压缩成byte数组,然后保存到Redis中。

在获取数据时,将byte数组转换成json字符串,然后再转换成分类树。

这样优化之后,保存到Redis中的分类树的数据大小减少10倍,从而解决大key问题。

4.6 热key问题

二八原理描述:80%的用户经常访问20%的热点数据。引发数据倾斜,不能均匀分布,尤其是高并发系统中问题比较大。

比如有个促销系统,有几款商品性价比非常高,这些商品数据在Redis中按分片保存的,不同的数据保存在不同的服务器节点上。
如果用户疯狂抢购其中3款商品,而这3款商品正好保存在同一台Redis服务端节点。
这样会出现大量的用户请求集中访问同一天Redis服务器节点,该节点很有可能会因为扛不住这么大的压力,而直接down机。

解决方案:
(1)拆分key:提前做好评估,将热点数据分开存储在不同redis服务器来分摊压力。
(2)增加本地缓存:对于热key数据,可以增加一层本地缓存(见前文),能够提升性能的同时也能避免Redis访问量过大的问题。但可能会出现数据不一致问题。

4.7 命中率问题

前面的情况都影响缓存的命中率问题,因为可能会出现缓存不存在,或者缓存过期等问题,导致缓存不能命中。
解决方案:
(1)缓存预热
在API服务启动之前,可以先用job,将相关数据先保存到缓存中,做预热。
这样后面的请求,就能直接从缓存中获取数据,而无需访问数据库。
(2)合理调整过期时间
(3)增加缓存内存

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/376717.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数学建模·非线性规划

整型规划 适用于一个变量或多个变量的值只能是整型的情况 整形规划的分类 0-1背包问题 对于一个物品来说&#xff0c;只有选和不选两种情况 表现为单下标&#xff0c;单变量问题 例&#xff1a;建设学校问题 对于每个学校来说只有选和不选两种情况&#xff0c;在数学上我们用…

轻松上手MYSQL:掌握MYSQL聚合函数,数据分析不再难

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》《MYSQL》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 ✨欢迎加入探索MYSQL聚合函数之旅✨ &#x1f44b; 大家好&#xff01;文本学习和探…

微服务-注册中心

一. 分布式系统架构与微服务 分布式系统架构和微服务是现代软件开发中常见的两种概念&#xff0c;它们通常结合使用来构建灵活、可扩展和高效的应用程序。 分布式系统架构&#xff1a; 分布式系统架构是指将一个单一的应用程序或服务拆分成多个独立的部分&#xff0c;这些部分…

第一部分:C++入门

目录 前言 1、C关键字(C98) 2、命名空间 2.1、命名空间定义 2.2、命名空间的使用 3、C输入&输出 4、缺省参数 4.1、缺省参数的概念 4.2、缺省参数的分类 5、函数重载 5.1、函数重载的概念 5.2、C支持函数重载的原理 6、引用 6.1、引用的概念 6.2、引用特性 …

ensp实现ICMP重定向实验

1 概述 ICMP重定向报文是ICMP控制报文中的一种。在特定的情况下&#xff0c;当路由器检测到一台机器使用非优化路由的时候&#xff0c;它会向该主机发送一个ICMP重定向报文&#xff0c;请求主机改变路由。路由器也会把初始数据包向它的目的地转发。 2 实验复现 拓扑如下 PC1配…

RedHat Linux8 修改root管理员账户密码命令

RedHat Linux8 修改root管理员账户密码命令&#xff1a; sudo passwd root RedHat重置root管理员密码&#xff1a; 1. 查看Linux系统版本信息 cat /etc/redhat-release2. 重置密码 2.1 进入内核编辑界面 重启Linux系统并出现引导界面&#xff0c;按下键盘上的e键进入内…

ftp服务

文章目录 一、概述1.1 标准模式1.2 被动模式 二、FTP作用与工作原理2.1 FTP的作用和模式以及通信方式2.2 FTP工作原理与流程2.2.1 主动模式的工作原理2.2.2 被动模式的工作原理2.2.3 主动和被动模式的区别 三、搭建和配置FTP服务3.1 安装前准备工作3.1.1 关闭防火墙和增强型安全…

交易平台Zero Hash现已支持SUI交易

Zero Hash是一家领先的加密货币和稳定币基础设施平台&#xff0c;为包括Stripe、Shift4和Franklin Templeton在内的公司提供支持&#xff0c;现在也支持对SUI的访问。此举使Zero Hash的客户及其终端用户能够使用SUI。 提供API和SDK以及专注于无缝连接法币、加密货币和稳定币的…

Linux rsync文件同步工具

scp的不足 1. 性能问题 单线程传输 SCP只使用单线程进行传输&#xff0c;这意味着在传输大文件或大量小文件时&#xff0c;其传输速度和效率可能不如其他多线程工具。 无法压缩数据传输 SCP不支持内置的压缩机制&#xff0c;这在传输大文件时会导致带宽使用效率较低。 2.…

【Python 项目】类鸟群:仿真鸟群

类鸟群&#xff1a;仿真鸟群 仔细观察一群鸟或一群鱼&#xff0c;你会发现&#xff0c;虽然群体由个体生物组成&#xff0c;但该群体作为一个整体似乎有它自己的生命。鸟群中的鸟在移动、飞越和绕过障碍物时&#xff0c;彼此之间相互定位。受到打扰或惊吓时会破坏编队&#xf…

香橙派AIpro:体验强劲算力,运行ROS系统

文章目录 前言一、香橙派AIpro开箱及功能介绍1.1香橙派AIpro开箱1.2香橙派AIpro功能介绍 二、香橙派AIpro资料下载及环境搭建2.1资料下载2.2环境搭建2.3使用串口启动进入开发板2.4使用HDMI线接入屏幕启动 三、部署ROS系统四、香橙派AIpro的使用和体验感受 前言 本篇文章将带体…

查找PPT中某种字体的全部对应文字

本文章的目的是找到某种字体的文字&#xff0c;而不是替换某种字体的文字&#xff0c;也不是将某种字体全部替换为另外一种文字。 第一步&#xff1a;在PPT中按下ALTF11 出现以下窗口 第二步&#xff1a;点击插入->模块 第三步&#xff1a;将以下代码输入到窗体中 Sub F…

[leetcode]partition-list 分隔链表

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:ListNode* partition(ListNode* head, int x) {ListNode *smlDummy new ListNode(0), *bigDummy new ListNode(0);ListNode *sml smlDummy, *big bigDummy;while (head ! nullptr) {if (head->val &l…

钉钉扫码登录第三方

钉钉文档 实现登录第三方网站 - 钉钉开放平台 (dingtalk.com) html页面 将html放在 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>登录</title>// jquery<script src"http://code.jqu…

redis redisson(仅供自己参考)

redis 通过setnx实现的分布式锁有问题 如图&#xff1a; 解决的新的工具为&#xff08;闪亮登场&#xff09;&#xff1a;redisson redisson可重入锁的原理 实现语言lua&#xff1a; 加锁实现脚本语言&#xff1a; 释放锁的脚本语言&#xff1a; 加锁的lua -- 首先判断这个锁…

[GWCTF 2019]我有一个数据库

我起初以为是sql注入 抓包什么都没有 扫描一下吧 全是文件包&#xff0c;找找有没有有用的 没啥用&#xff0c;但是我们还扫到了一个东西 访问phpmuyadmin/index.php发现什么用 然后我把index.php搞掉了发现version CVE-2018-12613 那么我们看看哦 ?targetdb_sql.php%…

hutool处理excel时候空指针小记

如图所示&#xff0c;右侧的会识别不到 参考解决方案&#xff1a; /***Description: 填补空缺位置为null/空串*Param: hutool读取的list*return: 无*Author: y*date: 2024/7/13*/public static void formatHutoolExcelArr(List<List<Object>> list) {if (CollUtil…

SCI一区级 | Matlab实现GJO-CNN-LSTM-Multihead-Attention多变量时间序列预测

SCI一区级 | Matlab实现GJO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测 目录 SCI一区级 | Matlab实现GJO-CNN-LSTM-Mutilhead-Attention多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GJO-CNN-LSTM-Mutilhead-Attention金豺优化算…

【C语言】指针(3):探索-不同类型指针变量

目录 一、字符指针变量 二、数组指针变量 三、二维数组传参的本质 四、函数指针变量 4.1 函数指针变量 4.2 函数指针变量的使用 4.3 函数指针变量的拓展 五、函数指针数组 六、转移表的应用 通过深入理解指针&#xff08;1&#xff09;和深入理解指针&#xff08;2&am…

【Redis】简单了解Redis中常用的命令与数据结构

希望文章能给到你启发和灵感&#xff5e; 如果觉得文章对你有帮助的话&#xff0c;点赞 关注 收藏 支持一下博主吧&#xff5e; 阅读指南 开篇说明一、基础环境说明1.1 硬件环境1.2 软件环境 二、Redis的特点和适用场景三、Redis的数据类型和使用3.1字符串&#xff08;String&…