嵌入式全栈设计思路:STM32G4+ChibiOS+FreeRTOS+PID控制+PFC算法构建高效智能电源管理系统(附代码示例)

智能电源管理系统是一个基于STM32G4微控制器的高性能数字电源控制解决方案。本项目旨在设计一个功能全面、高效稳定的电源管理系统,可广泛应用于工业控制、新能源、通信设备等领域。

1.1 系统主要特点

  1. 高精度数字电源控制:利用STM32G4的高性能ADC和定时器,实现精确的电压电流控制。
  2. 多模块协同工作:通过CAN总线实现多个电源模块的协同控制和负载均衡。
  3. 实时监控和保护:集成过压、过流、过温等多重保护机制,确保系统安全可靠。
  4. 远程配置和固件更新:支持通过RS485接口进行远程参数配置和固件更新。
  5. 高效率运行:采用先进的Buck/Boost拓扑和动态PFC技术,实现高效能量转换。

1.2 技术栈概览

  • 微控制器:STM32G474RE (STM32G4系列)
  • 操作系统:ChibiOS/RT 21.11.1
  • 电源管理:数字控制Buck/Boost转换器
  • 电流感应:INA226高精度电流检测芯片
  • 通信接口:CAN 2.0B, RS485 (Modbus RTU)
  • 数据采集:内置12位SAR ADC, 5MSPS采样率
  • 控制算法:数字PID控制,自适应控制
  • 人机界面:0.96" OLED显示屏,旋转编码器
  • 数据存储:W25Q64 8MB SPI Flash
  • 开发工具:STM32CubeIDE 1.9.0, Qt 5.15.2

2. 系统设计

2.1 硬件设计

系统硬件架构如下:

 

2.1.1 核心控制器

选用STM32G474RE,其主要特性包括:

  • ARM Cortex-M4内核,170MHz主频
  • 512KB Flash, 128KB SRAM
  • 5个12位ADC,采样率高达5MSPS
  • 7个高级定时器,支持高分辨率PWM
2.1.2 电源转换电路

采用同步整流Buck/Boost拓扑,主要组件:

  • 功率MOSFET:IPB020N10N3 (100V, 90A)
  • 驱动IC:UCC27211A-Q1
  • 输出电感:IHLP-5050FD-01 (10μH)
  • 输出电容:TDK C5750X6S2W225K250KA (2.2μF, 450V)

Buck/Boost拓扑允许系统在输入电压高于或低于输出电压时都能正常工作,提高了系统的适应性。同步整流技术显著提高了转换效率,特别是在高电流输出时。

2.1.3 电流检测

采用Texas Instruments的INA226高精度电流检测芯片:

  • 16位ADC,可测量范围±81.92mV
  • 精度:量程的0.1%
  • I2C接口,可编程采样速率
  • 内置校准和告警功能

将INA226与一个10mΩ精密分流电阻配合使用,可以实现高达±8.192A的电流测量范围。

2.1.4 通信接口
  1. CAN接口

    • 使用STM32G4内置的FDCAN控制器
    • 外部CAN收发器:TJA1044GT (5Mbps高速CAN)
    • 支持CAN 2.0B协议,用于多模块通信
  2. RS485接口

    • 使用STM32G4的UART接口
    • 外部RS485收发器:MAX3485
    • 支持Modbus RTU协议,用于远程监控和配置
2.1.5 人机界面
  • OLED显示屏:0.96英寸,128x64分辨率,SSD1306控制器
  • 旋转编码器:PEC11R-4215F-S0024 (24步/圈),用于用户输入
2.1.6 数据存储

采用Winbond W25Q64JVSSIQ 8MB SPI Flash:

  • 支持SPI/Dual SPI/Quad SPI接口
  • 100,000次编程/擦除周期
  • 用于存储系统日志和配置参数
2.1.7 温度监测

使用MAX31855KASA+热电偶数字转换器:

  • 冷端补偿K型热电偶数字转换器
  • 14位分辨率,0.25°C
  • SPI接口
  • 用于监测关键部件温度,实现过温保护

2.2 软件设计

软件架构采用分层设计,如下图所示:

 

2.2.1 操作系统

采用ChibiOS/RT 21.11.1实时操作系统:

  • 优先级基于的抢占式多任务调度
  • 低内存占用(约8KB ROM,2KB RAM)
  • 快速上下文切换(约200个时钟周期)
  • 丰富的同步原语(互斥量、信号量、事件标志等)
2.2.2 主要软件模块
  1. 电源控制模块

    • 实现数字PID控制算法
    • 自适应控制策略,根据负载变化调整参数
    • PWM生成与同步整流控制
  2. 数据采集模块

    • 高速ADC采样(电压、电流)
    • INA226电流检测芯片数据读取
    • 温度数据采集和处理
  3. 保护机制模块

    • 过压保护
    • 过流保护
    • 过温保护
    • 软启动控制
  4. 通信模块

    • CAN协议栈实现(多模块通信)
    • Modbus RTU协议实现(远程监控)
  5. 人机界面模块

    • OLED显示驱动
    • 旋转编码器输入处理
    • 菜单系统实现
  6. 数据存储模块

    • Flash读写驱动
    • 日志记录系统
    • 参数存储与恢复
  7. 系统管理模块

    • 任务调度
    • 电源状态管理
    • 错误处理和系统恢复
2.2.3 任务划分
任务名称优先级周期功能描述
controlTask100μs电源控制算法执行
adcTask200μsADC数据采集和处理
protectionTask1ms系统保护检查
communicationTask10ms通信协议处理
uiTask50ms用户界面更新
dataLogTask1s数据记录到Flash
2.2.4 关键算法实现
2.2.4.1 PID控制算法

PID(比例-积分-微分)控制是电源管理系统中最核心的算法之一,用于精确控制输出电压和电流。

typedef struct {float Kp, Ki, Kd;           // PID参数float error_sum, last_error; // 积分误差和上一次误差float output_min, output_max; // 输出限幅
} PID_Controller;float PID_Update(PID_Controller* pid, float setpoint, float measurement) {float error = setpoint - measurement;// 比例项float P = pid->Kp * error;// 积分项(带积分限幅)pid->error_sum += error;pid->error_sum = CLAMP(pid->error_sum, -10.0f, 10.0f);float I = pid->Ki * pid->error_sum;// 微分项float D = pid->Kd * (error - pid->last_error);pid->last_error = error;// 计算输出float output = P + I + D;// 输出限幅output = CLAMP(output, pid->output_min, pid->output_max);return output;
}

说明:

  • 该PID算法实现了基本的比例、积分和微分控制。
  • 使用了积分限幅来防止积分饱和。
  • 输出限幅确保控制信号在合理范围内。
2.2.4.2 自适应PID参数调整

为了应对不同负载条件,我们实现了一个简单的自适应PID参数调整算法。

void PID_Adapt(PID_Controller* pid, float error) {float abs_error = fabs(error);if (abs_error > 5.0f) {pid->Kp *= 1.1f;  // 误差大时增大Kp} else if (abs_error < 1.0f) {pid->Kp *= 0.9f;  // 误差小时减小Kp}pid->Kp = CLAMP(pid->Kp, 0.1f, 10.0f);  // 限制Kp的范围
}

说明:

  • 根据误差大小动态调整Kp参数。
  • 当误差较大时,增大Kp以提高响应速度。
  • 当误差较小时,减小Kp以提高稳定性。
  • Kp的值被限制在0.1到10之间,防止过度调整。
2.2.4.3 软启动算法

软启动算法用于在系统启动时缓慢增加输出电压,避免突然的电流冲击。

typedef struct {float target_voltage;       // 目标电压float current_voltage;      // 当前电压float ramp_rate;            // 斜率 (V/s)uint32_t last_update_time;  // 上次更新时间
} SoftStart;void SoftStart_Init(SoftStart* ss, float target, float rate) {ss->target_voltage = target;ss->current_voltage = 0.0f;ss->ramp_rate = rate;ss->last_update_time = HAL_GetTick();
}float SoftStart_Update(SoftStart* ss) {uint32_t now = HAL_GetTick();float elapsed_time = (now - ss->last_update_time) / 1000.0f;ss->last_update_time = now;ss->current_voltage += ss->ramp_rate * elapsed_time;if (ss->current_voltage >= ss->target_voltage) {ss->current_voltage = ss->target_voltage;return -1.0f;  // 软启动完成}return ss->current_voltage;
}

说明:

  1. SoftStart 结构体包含了软启动所需的所有参数:

    • target_voltage: 最终要达到的目标电压
    • current_voltage: 当前输出电压
    • ramp_rate: 电压上升的速率(V/s)
    • last_update_time: 上次更新的时间戳
  2. SoftStart_Init 函数用于初始化软启动参数:

    • 设置目标电压和斜率
    • 初始电压设为0
    • 记录初始时间戳
  3. SoftStart_Update 函数实现了软启动的核心逻辑:

    • 计算自上次更新以来的时间间隔
    • 根据时间间隔和斜率增加当前电压
    • 如果达到或超过目标电压,则返回-1表示软启动完成
    • 否则返回当前电压值

使用这个软启动算法可以实现电压的平滑上升,减少启动时的浪涌电流,保护电源和负载。在实际应用中,可以将这个算法集成到主控制循环中,在系统启动或重启时调用。

2.2.4.4 动态功率因数校正 (PFC) 算法

动态功率因数校正算法用于改善电源的功率因数,提高能源利用效率。

typedef struct {float voltage_rms;   // 电压有效值float current_rms;   // 电流有效值float power_factor;  // 当前功率因数float target_pf;     // 目标功率因数float duty_cycle;    // PWM占空比
} PFC_Controller;void PFC_Update(PFC_Controller* pfc, float voltage, float current) {// 更新RMS值(使用简化的移动平均法)pfc->voltage_rms = (pfc->voltage_rms * 0.9f) + (fabsf(voltage) * 0.1f);pfc->current_rms = (pfc->current_rms * 0.9f) + (fabsf(current) * 0.1f);// 计算功率因数(简化计算,假设电压和电流同相位)float apparent_power = pfc->voltage_rms * pfc->current_rms;float active_power = voltage * current;pfc->power_factor = active_power / apparent_power;// 调整PWM占空比以改善功率因数float pf_error = pfc->target_pf - pfc->power_factor;pfc->duty_cycle += pf_error * 0.01f;  // 简单的比例调节// 限制占空比在有效范围内pfc->duty_cycle = CLAMP(pfc->duty_cycle, 0.1f, 0.9f);
}float PFC_GetDutyCycle(PFC_Controller* pfc) {return pfc->duty_cycle;
}

说明:

  1. PFC_Controller 结构体包含了PFC所需的参数:

    • voltage_rms 和 current_rms: 电压和电流的有效值
    • power_factor: 当前计算得到的功率因数
    • target_pf: 目标功率因数(通常接近1)
    • duty_cycle: 用于控制功率因数的PWM占空比
  2. PFC_Update 函数实现了PFC的核心逻辑:

    • 使用简化的移动平均法更新电压和电流的RMS值
    • 计算当前功率因数(这里使用了简化计算,假设电压和电流同相位)
    • 根据当前功率因数和目标功率因数的误差调整PWM占空比
    • 将占空比限制在10%到90%之间,确保系统稳定性
  3. PFC_GetDutyCycle 函数用于获取当前的PWM占空比,以便控制功率开关

使用说明:

  • 在主控制循环中定期调用 PFC_Update 函数,传入实时的电压和电流采样值
  • 使用 PFC_GetDutyCycle 获取计算得到的PWM占空比,并应用到功率控制电路
  • 根据实际系统特性,可能需要调整占空比调节的比例系数(当前为0.01)

注意事项:

  1. 这是一个简化的PFC算法,实际应用中可能需要更复杂的相位检测和控制策略。
  2. 功率因数的计算假设了电压和电流同相位,这在实际系统中可能并不准确。更精确的实现应该考虑相位差。
  3. 移动平均法用于RMS计算是一种近似方法,对于快速变化的信号可能不够准确。在高精度要求的场合,应考虑使用真RMS计算方法。
  4. 占空比的调整使用了简单的比例控制,可能需要根据系统特性调整或采用更复杂的控制策略(如PI控制)。
  5. 算法没有考虑电网频率变化,在某些应用中可能需要频率跟踪功能。

改进建议:

  1. 实现相位检测:使用零交叉检测或DFT(离散傅里叶变换)来准确测量电压和电流的相位差。
  2. 增加自适应控制:根据负载特性自动调整控制参数。
  3. 添加谐波分析:在某些应用中,可能需要考虑谐波对功率因数的影响。
  4. 实现软启动:在PFC启动时,逐渐增加占空比以避免突然的电流冲击。
  5. 故障检测:添加过压、过流等保护机制。

示例代码扩展:

// 添加相位检测功能
void PFC_DetectPhase(PFC_Controller* pfc, float voltage, float current) {// 使用零交叉检测或其他方法检测相位// 这里仅为示意,实际实现可能更复杂static float last_voltage = 0;if (voltage >= 0 && last_voltage < 0) {// 电压零交叉点pfc->voltage_phase = 0;}if (current >= 0 && pfc->last_current < 0) {// 电流零交叉点,计算相对于电压的相位差pfc->current_phase = (HAL_GetTick() - pfc->last_voltage_zero) / (1000.0f / 50.0f) * 360.0f;}last_voltage = voltage;pfc->last_current = current;
}// 更精确的功率因数计算
float PFC_CalculatePowerFactor(PFC_Controller* pfc) {return cosf(pfc->current_phase * PI / 180.0f);
}// 添加到主更新函数
void PFC_Update(PFC_Controller* pfc, float voltage, float current) {PFC_DetectPhase(pfc, voltage, current);// ... 其他更新逻辑 ...pfc->power_factor = PFC_CalculatePowerFactor(pfc);// ... 继续原有的控制逻辑 ...
}

3. 系统集成

3.1 硬件集成

  1. PCB设计:使用Altium Designer进行四层PCB设计,考虑EMI/EMC布局。
  2. 热管理:为关键组件(如功率MOSFET和电感)设计适当的散热方案。
  3. 接口设计:包括电源输入/输出端子、通信接口(CAN, RS485)、调试接口(JTAG/SWD)。

3.2 软件集成

  1. 驱动层集成:将各硬件驱动(ADC, PWM, CAN, RS485等)整合到ChibiOS的HAL层。
  2. 中间件集成:将FatFS文件系统与W25Q64 Flash驱动结合,实现数据存储功能。
  3. 应用层集成:将PID控制、PFC算法、保护机制等模块组合成完整的应用程序。

3.3 固件更新机制

实现基于CAN总线或RS485的在线固件更新功能:

typedef struct {uint32_t firmware_version;uint32_t firmware_size;uint32_t crc32;
} FirmwareHeader;bool UpdateFirmware(uint8_t* new_firmware, uint32_t size) {FirmwareHeader* header = (FirmwareHeader*)new_firmware;// 验证固件if (CalculateCRC32(new_firmware + sizeof(FirmwareHeader), size - sizeof(FirmwareHeader)) != header->crc32) {return false;}// 擦除FlashFLASH_Erase(FIRMWARE_START_ADDRESS, header->firmware_size);// 写入新固件FLASH_Write(FIRMWARE_START_ADDRESS, new_firmware + sizeof(FirmwareHeader), header->firmware_size);// 验证写入if (memcmp((void*)FIRMWARE_START_ADDRESS, new_firmware + sizeof(FirmwareHeader), header->firmware_size) != 0) {return false;}// 更新启动标志UpdateBootFlag(header->firmware_version);return true;
}

4. 测试与验证

4.1 单元测试

使用Unity测试框架对关键模块进行单元测试:

void test_PID_controller(void) {PID_Controller pid = {1.0f, 0.1f, 0.01f, 0, 0, -100, 100};TEST_ASSERT_FLOAT_WITHIN(0.1f, 50.0f, PID_Update(&pid, 100, 50));TEST_ASSERT_FLOAT_WITHIN(0.1f, 25.0f, PID_Update(&pid, 100, 75));
}void test_soft_start(void) {SoftStart ss;SoftStart_Init(&ss, 12.0f, 1.0f);TEST_ASSERT_FLOAT_WITHIN(0.1f, 1.0f, SoftStart_Update(&ss));// Simulate 1 second passingss.last_update_time -= 1000;TEST_ASSERT_FLOAT_WITHIN(0.1f, 2.0f, SoftStart_Update(&ss));
}

4.2 集成测试

  1. 功能测试:验证所有功能模块的协同工作。
  2. 性能测试:测试系统在不同负载条件下的响应时间和稳定性。
  3. 压力测试:在极限条件下运行系统,如最大负载、高温环境等。
  4. 长期可靠性测试:连续运行系统至少 1000 小时,监控性能变化。

测试用例示例:

void test_full_system_startup(void) {// 模拟系统启动SystemInit();// 验证软启动TEST_ASSERT_TRUE(WaitForVoltageStable(12.0f, 5000));  // 等待电压稳定在12V,超时5秒// 验证PFC功能TEST_ASSERT_FLOAT_WITHIN(0.05f, 0.98f, GetPowerFactor());  // 功率因数应该接近1// 验证通信功能TEST_ASSERT_TRUE(TestCANComm());TEST_ASSERT_TRUE(TestModbusComm());
}void test_load_transient_response(void) {// 设置初始负载SetLoad(5.0f);  // 5A负载// 等待系统稳定Delay(1000);// 突然增加负载SetLoad(10.0f);  // 增加到10A// 检查电压恢复时间uint32_t recovery_time = MeasureVoltageRecoveryTime(11.5f, 12.5f);TEST_ASSERT_LESS_THAN(500, recovery_time);  // 恢复时间应小于500ms
}

4.3 EMC/EMI 测试

  1. 传导发射测试:确保系统符合 CISPR 22/EN 55022 标准。
  2. 辐射发射测试:验证系统在正常运行时不会产生过量电磁干扰。
  3. 抗扰度测试:测试系统对外部电磁干扰的抵抗能力,包括 ESD、浪涌等。

5. 项目总结

本智能电源管理系统项目成功实现了以下目标:

  1. 基于 STM32G4 的高性能数字控制电源系统,支持精确的电压和电流调节。
  2. 实现了先进的 PFC 算法,显著提高了系统的功率因数。
  3. 集成了多种保护机制,确保系统在各种条件下安全可靠运行。
  4. 通过 CAN 和 Modbus 协议实现了灵活的通信和远程管理功能。
  5. 软启动和自适应控制算法提高了系统的稳定性和适应性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/377776.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#小结:未能找到类型或命名空间名“xxx”(是否缺少 using 指令或程序集引用?)

方案一&#xff1a;移除这些失效的引用&#xff0c;下载对应版本的dll&#xff0c;重新添加引用 方案二&#xff1a;项目右键属性-调整目标框架版本&#xff08;一般是降低版本&#xff09; 方案三&#xff1a;调整编译顺序&#xff1a; 项目A&#xff1a;引用1、引用2 &…

基于Java的斗地主游戏案例开发(做牌、洗牌、发牌、看牌

package Game;import java.util.ArrayList; import java.util.Collections;public class PokerGame01 {//牌盒//♥3 ♣3static ArrayList<String> list new ArrayList<>();//静态代码块//特点&#xff1a;随着类的加载而在加载的&#xff0c;而且只执行一次。stat…

mysql-connector-java 8.0.33 反序列化漏洞

前言 经过与oracle官方沟通&#xff0c;在最新的mysql-connector-j 9.0.0里不存在这个问题&#xff0c;所以他们不认为这是个漏洞 不过确实&#xff0c;mysql-connector-java这个分支已经迁移到mysql-connector-j了&#xff0c;当时没注意&#xff0c;交的时候只注意了mysql-c…

新版本 idea 创建不了 spring boot 2 【没有jkd8选项】

创建新项目 将地址换成如下 https://start.aliyun.com/

C语言课程回顾:十、C语言之 指针

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 C语言之 指针 10 指针10.1 地址指针的基本概念10.2 变量的指针和指向变量的指针变量10.2.1 定义一个指针变量10.2.2 指针变量的引用10.2.3 指针变量作为函数参数10.2.4 指针变…

Elasticsearch集群搭建

集群概念 在单台 ES 服务器上&#xff0c;随着一个索引内数据的增多&#xff0c;会产生存储、效 率、安全等问题。 因此引入集群 我们需要将索引拆分成多份&#xff0c;分别放入不同的服务器中&#xff0c;此时这几台服务器维护了同一个索引&#xff0c;我们称这几台服务器为一…

每日一练@

目录 题目1.关于AOP错误的是&#xff1f;2.关于以下代码的说明&#xff0c;正确的是&#xff08; &#xff09;3.以下类型为Final类型的为&#xff08;&#xff09;4.以下说法哪个是正确的&#xff08;&#xff09; 题目 选自牛客网 1.关于AOP错误的是&#xff1f; A.AOP将散…

C++的缺省参数、函数重载和引用

缺省参数 缺省参数是声明或定义函数时为函数的参数指定⼀个缺省值。在调⽤该函数时&#xff0c;如果没有指定实参 则采⽤该形参的缺省值&#xff0c;否则使⽤指定的实参&#xff0c;缺省参数分为全缺省和半缺省参数。(有些地⽅把 缺省参数也叫默认参数)&#xff0c;要注意的是…

2.The DispatcherServlet

The DispatcherServlet Spring的Web MVC框架与许多其他Web MVC框架一样&#xff0c;是请求驱动的&#xff0c;围绕一个中央Servlet&#xff08;即DispatcherServlet&#xff09;设计&#xff0c;该Servlet将请求分派给控制器&#xff0c;并提供其他功能以促进Web应用程序的开发…

VUE前端HTML静默打印(不弹出打印对话框)PDF简单方案

前言 在做打印功能的时候&#xff0c;以前大部分客户端都是用C#做的&#xff0c;静默打印&#xff08;也就是不弹出打印对话框&#xff09;比较简单。 但是使用浏览器作为客户端&#xff0c;静默打印&#xff08;也就是不弹出打印对话框&#xff09;做起来就比较困难。困难的…

Ubuntu 磁盘扩容

1.下载工具 sudo apt-get install gparted 2.调整大小

Stable Diffusion 使用

目录 背景 最简单用法 进阶用法 高手用法 safetensor 一、概述 二、主要特点 背景 Stable Diffusion 开源后&#xff0c;确实比较火&#xff0c;上次介绍了下 Stable Diffusion 最简单的concept。今天继续介绍下&#xff0c;以Liblib 为例&#xff0c;介绍下如何使用参…

Ubuntu22.4 Qt6.6 ros_qtc_plugin插件安装

1.下载官方插件 https://github.com/ros-industrial/ros_qtc_plugin/releases 2. Qt Creator中&#xff0c;“Help - 关于插件”–>“install Plugin…”–>“浏览…”&#xff0c;找到下载的插件&#xff0c;按照提示安装&#xff0c;最后重启Qt。 3.重启Qt后&#xff0…

Spark SQL 概述

Spark SQL 概述 Spark SQL 是 Apache Spark 的一个模块&#xff0c;专门用于处理结构化数据。它集成了 SQL 查询和 Spark 编程的强大功能&#xff0c;使得处理大数据变得更加高效和简便。通过 Spark SQL&#xff0c;用户可以直接在 Spark 中使用 SQL 查询&#xff0c;或者使用 …

JMeter进行HTTP接口测试的技术要点

参数化 用户定义的变量 用的时候 ${名字} 用户参数 在参数列表中传递 并且也是${} csv数据文件设置 false 不忽略首行 要首行 从第一行读取 true 忽略首行 从第二行开始 请求时的参数设置&#xff1a; 这里的名称是看其接口需要的请求参数的名称 这里的变量名称就是为csv里面…

itextpdf字体选择

itextpdf 版本7.2.5 itextpdf-html2pdf 版本4.0.5 这里讲的是通过html转pdf&#xff0c;在html2pdf中是通过html中font-family样式来确定字体的&#xff0c;那已知font-family的情况&#xff0c;怎么确定pdf中实际用的字体&#xff0c;大致分为两步&#xff1a; 1、通过font…

网页数据抓取:融合BeautifulSoup和Scrapy的高级爬虫技术

网页数据抓取&#xff1a;融合BeautifulSoup和Scrapy的高级爬虫技术 在当今的大数据时代&#xff0c;网络爬虫技术已经成为获取信息的重要手段之一。Python凭借其强大的库支持&#xff0c;成为了进行网页数据抓取的首选语言。在众多的爬虫库中&#xff0c;BeautifulSoup和Scrap…

图像识别和目标检测在超市电子秤上的应用

目录 前言深度学习的目标检测图像识别技术视觉秤的优势其他应用场景中的技术应用未来展望 前言 随着科技的不断发展&#xff0c;电子秤在生鲜超市中的应用也在不断升级。传统的电子秤需要打秤人员手动输入秤码&#xff0c;这不仅耗时费力&#xff0c;还需要大量的培训以记住各…

在Mac上一键安装Mysql(解决所有安装问题)

重点强调安装mysql成功的关键在于安装的版本不能是最新&#xff01;&#xff01; 目录 一&#xff1a;下载mysql数据库安装部分到此结束 二&#xff1a;配置mysql数据库三&#xff1a;启动mysql数据库四&#xff1a;各类奇葩问题总结 一&#xff1a;下载mysql数据库 1.进入MyS…

替换:show-overflow-tooltip=“true“ ,使用插槽tooltip,达到内容可复制

原生的show-overflow-tooltip“true” 不能满足条件&#xff0c;使用插槽自定义编辑&#xff1b; 旧code <el-table-column prop"reason" label"原因" align"center" :show-overflow-tooltip"true" /> <el-table-column pro…