Zookeeper之CAP理论及分布式一致性算法

CAP理论

CAP理论告诉我们,一个分布式系统不可能同时满足以下三种

  • 一致性(C:consistency)
  • 可用性(A:Available)
  • 分区容错性(P:Partition Tolerance)

这三个基本要求,最多只能同时满足其中的两项,因为P是必须的,因此往往选择就在CP或者AP中

(1)一致性(C:consistency)

        在分布式环境中,一致性是指数据在多个副本之间是否能够保持数据一致的特性。在一致性的需求下,当一个系统在数据一致的状态下执行更新操作后,应该保证系统的数据仍然处于一致的状态。

(2)可用性(A:Available)

       可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。

(3)分区容错性(P:Partition Tolerance)

分布式系统在遇到任何网络分区故障的时候,仍然需要保证对外提供满足一致性和可用性,除非是整个网络环境都发生了故障(多个副本,其中几个副本down掉不影响系统使用)

Zookeeper保证的是CP

(1)Zookeeper不能保证每次服务请求的可用性。(注:在极端环境下,Zookeeper可能会丢弃一些请求,消费者程序需要重新请求才能获得结果)。所以说,Zookeeper不能保证服务可用性

(2)进行Leader选举时集群都是不可用。

Paxos算法

Paxos算法:一种基于消息传递且具有高度容错特性的一致性算法。

Paxos算法解决的问题:就是如何快速正确的在一个分布式系统中对某个数据值达成一致,并且保证不论发生任何异常,都不会破坏整个系统的一致性。

Paxos算法描述:

在一个Paxos系统中,首先将所有节点划分为Proposer(提议者),Acceptor(接受者)和Learner(学习者)。(注意:每个节点都可以身兼数职)。

一个完整的Paxos算法流程分为三个阶段:

PrePare准备阶段

  • Proposer向多个Acceptor发出Propose请求Promise(承诺)
  • Acceptor针对收到的Propose请求进行Promise(承诺)

Accept接受阶段

  • Proposer收到多数Acceptor承诺的Promise后,向Acceptor发出Propose请求(承诺)
  • Acceptor针对收到的Propose请求进行Accept处理

Learn学习阶段

  • Proposer将形成的决议发送给所有Learners

Paxos算法流程:

(1)Prepare:Proposer生产全局唯一且递增的Proposal ID,向所有Acceptor发送Propose请求,这里无需携带提案内容,只携带Proposal ID即可。

(2)Promise:Acceptor收到Propose请求后,做出“两个承诺,一个应答”。

  • 不再接受Proposal ID小于等于(注意:这里是<=)当前请求的Propose请求。
  • 不再接受Proposal ID小于(注意:这里是<)当前请求的Accept请求。
  • 不违背以前做出的承诺下,回复已经Accept过的提案中Proposal ID最大的那个提案的Value和Proposal ID,没有则返回空值。

(3)Propose:Proposer收到多数Acceptor的Promise应答后,从应答中选择Proposal ID最大的提案的Value,作为本次要发起的提案。如果所有应答的提案Value均为空值,则可以自己随意决定提案Value。然后携带当前Proposal ID,向所有Acceptor发送Propose请求。

(4)Accept:Acceptor收到Propose请求后,在不违背自己之前做出的承诺下,接受并持久化当前Proposal ID和提案Value。

(5)Learn:Proposer收到多数Acceptor的Accept后,决议形成,将形成的决议发送给所有Leader。

情况1:

有A1,A2,A3,A4,A5 5位议员,就税率问题进行决议

  • A1发起1号Proposal的Propose,等待Promise承诺;
  • A2-A5回应Promise;
  • A1在收到两份回复时就会发起税率10%的Proposal;
  • A2-A5回应Accept;
  • 通过Proposal,税率10%。

情况2:

  • A1、A5同时发起Propose(序号分别为1,2)
  • A2承诺A1,A4承诺A5,A3行为成为关键
  • 情况1:A3先收到A1消息,承诺A1。
  • A1发起Proposal(1, 10%),A2,A3接受。
  • 之后A3又收到A5消息,回复A1:(1, 10%),并承诺A5。
  • A5发起Proposal(2, 20%),A3,A4接受。之后A1,A5同时广播决议。
  • 情况2:A3先收到A1消息,承诺A1。之后立刻收到A5消息,承诺A5.
  • A1发起Proposal(1, 10%),无足够响应,A1重新Propose(序号3),A3再次承诺A1。
  • A5发起Proposal(2, 20%),无足够响应,A5重新Propose(序号4),A3再次承诺A5。
  • ......

造成这种情况的原因是系统重有一个以上的Proposer,多个Proposers互相争夺Acceptor,造成迟迟无法达成一致的情况,这对这种情况,一种改进的Paxos算法被提出:从系统中选出一个节点作为Leader,只有Leader能够发起提案。这样,一次Paxos流程中只有一个Proposer,不会出现活锁的情况,此时只会出现例子中第一种情况。

ZAB协议:

Zab算法:Zab借鉴了Paxos算法,是特别为Zookeeper设计的支持崩溃恢复的原子广播协议。基于该协议,Zookeeper设计为只有一台客户端(Leader)负责处理外部的写事务请求,然后Leader客户端将数据同步到其它Follower节点,即Zookeeper只有一个Leader可以发起提案。

Zab协议内容:

        包括两种基本的模式:消息广播、崩溃恢复

(1)客户端发起一个写操作请求。

(2)Leader服务器将客户端的请求转化为事务Proposal提案,同时为每个Proposal分配一个全局的ID,即zxid。

(3)Leader服务器为每个Follower服务器分配一个单独的队列,然后将需要广播的Proposal依次放到队列中去,并且根据FIFO策略进行消息发送。

(4)Follower接收到Proposal后,会首先将其以事务日志的方式写入本地磁盘中,写入成功后Leader反馈一个Ack(确认消息)响应消息。

(5)Leader接收到超过半数以上Follower的Ack响应消息后,即认为消息发送成功,可以发送commit消息。

(6)Leader向所有Follower广播commit消息,同时自身也会完成事务提交。Follower接收到commit消息后,会将上一条事务提交。

(7)Zookeeper采用Zab协议的核心,就是只要有一台服务器提交了Proposal,就要确认所有的服务器最终都能正确提交Proposal

崩溃恢复:

一旦Leader服务器出现崩溃或者由于网络原因导致Leader服务器失去了与过半Follower的联系,那么就会进入崩溃恢复模式

1)假设两种服务器异常情况:

(1)假设一个事务在Leader提出之后,Leader挂了。

(2)一个事务在Leader上提交了,并且过半的Follower都响应Ack了,但是Leader在Commit消息发出之前挂了。

2)Zab协议崩溃恢复要求满足以下两个要求:

(1)确保已经被Leader提交的提案Proposal,必须最终被所有的Follower服务器提交。(已经产生的提案,Follower必须执行

(2)确保丢弃已经被Leader提出的,但是没有被提交的Proposal。(丢弃胎死腹中的提案

崩溃恢复——Leader选举:

崩溃恢复主要包括两部分:Leader选举和数据恢复

Leader选举:根据上述要求,Zab协议需要保证选举出来的Leader需要满足以下条件:

(1)新选举出来的Leader不能包含未提交的Proposal。即新Leader必须都是已经提交了Proposal的Follower服务器节点

(2)新选举的Leader节点中含有最大的zxid。这样做的好处是可以避免Leader服务器检查Proposal的提交和丢弃工作。

崩溃恢复——数据恢复:

崩溃恢复主要包括两部分:Leader选举和数据恢复

Zab如何数据同步:

(1)完成Leader选举后,在正式开始工作之前(接收事务请求,然后提出新的Proposal),Leader服务器会首先确认事务日志中的所有的Proposal是否已经被集群中过半的服务器Commit。

(2)Leader服务器需要确保所有的Follower服务器能够接收到每一条事务的Proposal,并且能将所有已经提交的事务Proposal应用到内存数据中。等到Follower将所有尚未同步的事务Proposal都从Leader服务器上同步过,并且应用到内存数据中以后,Leader才会把该Follower加入到真正可用的Follower列表中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/377960.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Pytorch】数据集的加载和处理(一)

Pytorch torchvision 包提供了很多常用数据集 数据按照用途一般分为三组&#xff1a;训练&#xff08;train&#xff09;、验证&#xff08;validation&#xff09;和测试&#xff08;test&#xff09;。使用训练数据集来训练模型&#xff0c;使用验证数据集跟踪模型在训练期间…

c++包管理器

conan conan search&#xff0c;查看网络库 conan profile detect&#xff0c;生成缓存信息conan new cmake_exe/cmake_lib&#xff0c;创建cmakelists.txtconan install .&#xff0c;执行Conanfile.txt中的配置&#xff0c;生成相关的bat文件 项目中配置Conanfile.txt(或者…

【AIGC】二、mac本地采用GPU启动keras运算

mac本地采用GPU启动keras运算 一、问题背景二、技术背景三、实验验证本机配置安装PlaidML安装plaidml-keras配置默认显卡 运行采用 CPU运算的代码step1 先导入keras包&#xff0c;导入数据cifar10&#xff0c;这里可能涉及外网下载&#xff0c;有问题可以参考[keras使用基础问题…

linux后门教程

linux后门教程 alias 用法 系统默认别名&#xff1a;alias 设置别名&#xff1a;alias lsls -laih 删除别名&#xff1a;unalias ls **加参数&#xff1a;**alias ls‘ls -laih;pwd’ 注意 系统启动默认加载的配置文件 /etc/profile 切换用户就会执行/etc/profile /etc/bash…

正则表达式(Ⅱ)——重复匹配

简介 基本匹配是在其中选择一个进行拼装&#xff0c;而重复匹配则是去指定字符可以出现的次数 基本匹配中的字符要么不出现&#xff0c;匹配上了也只能是出现一次 重复匹配使用一些特殊字符用来指定一个字符在文本中重复的次数。它们分别是加号 、星号 * &#xff0c;问号 ?…

面试经验总结

某生物科技公司 1.代码实现删除一个 list 里面的重复元素 方法1&#xff1a;最简单容易的方法 此方法基于遍历整个列表&#xff0c;将第一个元素添加到新列表中。 # Python 3 code to demonstrate # removing duplicated from list # using naive methods # initializing …

数据结构—链式二叉树-C语言

代码位置&#xff1a;test-c-2024: 对C语言习题代码的练习 (gitee.com) 一、前言&#xff1a; 在现实中搜索二叉树为常用的二叉树之一&#xff0c;今天我们就要通过链表来实现搜索二叉树。实现的操作有&#xff1a;建二叉树、前序遍历、中序遍历、后序遍历、求树的节点个数、求…

免费开源的工业物联网(IoT)解决方案

什么是 IoT&#xff1f; 物联网 (IoT) 是指由实体设备、车辆、电器和其他实体对象组成的网络&#xff0c;这些实体对象内嵌传感器、软件和网络连接&#xff0c;可以收集和共享数据。 IoT 设备&#xff08;也称为“智能对象”&#xff09;范围广泛&#xff0c;包括智能恒温器等…

FastAPI 学习之路(四十四)WebSockets

我们之前的分析都是基于http的请求&#xff0c;那么如果是websockets可以支持吗&#xff0c;答案是可以的&#xff0c;我们来看下是如何实现的。 from fastapi import WebSocket, FastAPI from fastapi.responses import HTMLResponseapp FastAPI()html """&…

架构师机器学习操作 (MLOps) 指南

MLOps 是机器学习操作的缩写&#xff0c;是一组实践和工具&#xff0c;旨在满足工程师构建模型并将其投入生产的特定需求。一些组织从一些自主开发的工具开始&#xff0c;这些工具在每次实验后对数据集进行版本控制&#xff0c;并在每个训练周期后对检查点模型进行版本控制。另…

新手-前端生态

文章目录 新手的前端生态一、概念的理解1、脚手架2、组件 二、基础知识1、HTML2、css3、JavaScript一、基础语法1、javaScript的引入2、认识输出语句3、学会处理报错 二、变量1、如何使用变量 2、变量的命名规范3、推荐的变量命名法4、变量默认值5、变量常见的错误6、变量声明提…

Prometheus 云原生 - 微服务监控报警系统 (Promethus、Grafana、Node_Exporter)部署、简单使用

目录 开始 Prometheus 介绍 基本原理 组件介绍 下文部署组件的工作方式 Prometheus 生态安装&#xff08;Mac&#xff09; 安装 prometheus 安装 grafana 安装 node_exporter Prometheus 生态安装&#xff08;Docker&#xff09; 安装 prometheus 安装 Grafana 安装…

人工智能算法工程师(中级)课程14-神经网络的优化与设计之拟合问题及优化与代码详解

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能算法工程师(中级)课程14-神经网络的优化与设计之拟合问题及优化与代码详解。在机器学习和深度学习领域&#xff0c;模型的训练目标是找到一组参数&#xff0c;使得模型能够从训练数据中学习到有用的模式&am…

设计模式总结(设计模式的原则及分类)

1.什么是设计模式&#xff1f; 设计模式(Design pattern)代表了最佳的实践&#xff0c;通常被有经验的面向对象的软件开发人员所采用。设计模式是软件开发人员在软件开发过程中面临的一般问题的解决方案。这些解决方案是众多软件开发人员经过相当长的一段时间的试验和错误总结…

【ACM 独立出版,高录用EI稳检索】2024年大数据与数字化管理国际学术会议 (ICBDDM 2024,8月16-18)

2024年大数据与数字化管理国际学术会议 (ICBDDM 2024)&#xff0c;将于2024年8月16-18日在中国上海召开。 “大数据与数字化管理”作为会议主题&#xff0c;旨在聚焦这一跨学科领域中最新的理论研究、技术进展、实践案例和未来趋势。本主题探讨的研究方向涵盖了大数据的收集、…

使用uni-app和Golang开发影音类小程序

在数字化时代&#xff0c;影音内容已成为人们日常生活中不可或缺的一部分。个人开发者如何快速构建一个功能丰富、性能优越的影音类小程序&#xff1f;本文将介绍如何使用uni-app前端框架和Golang后端语言来实现这一目标。 项目概述 本项目旨在开发一个个人影音类小程序&#…

最新Qt6的下载与成功安装详细介绍

引言 Qt6 是一款强大的跨平台应用程序开发框架&#xff0c;支持多种编程语言&#xff0c;最常用的是C。Qt6带来了许多改进和新功能&#xff0c;包括对C17的支持、增强的QML和UI技术、新的图形架构&#xff0c;以及构建系统方面的革新。本文将指导你如何在Windows平台上下载和安…

Webpack看这篇就够了

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…

PostgreSQL安装/卸载(CentOS、Windows)

说明&#xff1a;PostgreSQL与MySQL一样&#xff0c;是一款开源免费的数据库技术&#xff0c;官方口号&#xff1a;The World’s Most Advanced Open Source Relational Database.&#xff08;世界上最先进的开源关系数据库&#xff09;&#xff0c;本文介绍如何在Windows、Cen…

一款好用的特殊字符处理工具

跟mybatis代码的时候&#xff0c;偶然发现的一款特殊字符处理工具java.lang.StringTokenizer。平常&#xff0c;我们看到的mybatis mapper.xml里面各种换行各种缩进&#xff0c;但日志文件里面的sql都是整整齐齐的。没有换行符&#xff0c;缩进等。就是利用该工具做的格式化处理…