【信号频率估计】MVDR算法及MATLAB仿真

目录

  • 一、MVDR算法
    • 1.1 简介
    • 1.2 原理
    • 1.3 特点
      • 1.3.1 优点
      • 1.3.2 缺点
  • 二、算法应用实例
    • 2.1 信号的频率估计
    • 2.2 MATLAB仿真代码
  • 三、参考文献

一、MVDR算法

1.1 简介

最小方差无失真响应(Mininum Variance Distortionless Response,MVDR)算法最早是J. Capon于1969年提出,用于多维地震阵列传感器的频率-波数分析。随后,Lacoss在1971年将其引入到一维时间序列的分析中。
MVDR算法由于是Capon提出的,所以也将其称为Capon算法。

1.2 原理

根据数字波束形成的原理,得到输入信号 x ( n ) x(n) x(n) 经空域滤波后的输出为:
y ( n ) = w H x ( n ) = w H a ( θ ) s ( n ) ( 1 − 1 ) y(n)=w^{H}x(n)=w^{H}a(θ)s(n) (1-1) y(n)=wHx(n)=wHa(θ)s(n)11
其中,输入信号 x ( n ) x(n) x(n) 为期望、干扰、噪声三种信号的耦合; a ( θ ) a(θ) a(θ) 为导向矢量。
当一个远场窄带信号 s ( n ) s(n) s(n) 入射到 M 个阵元的均匀线阵时,阵列输出信号的平均功率为:
P ( θ ) = E [ ∣ y ( n ) ∣ 2 ] = E [ w H x ( n ) x H ( n ) w ] = w H R w ( 1 − 2 ) P(θ)=E[|y(n)|^2]=E[w^{H}x(n)x^{H}(n)w]=w^{H}Rw (1-2) P(θ)=E[y(n)2]=E[wHx(n)xH(n)w]=wHRw12
式(1-2)中 R = E [ x ( n ) x H ( n ) ] R=E[x(n)x^{H}(n)] R=E[x(n)xH(n)] 为接收信号 x ( n ) x(n) x(n) 的空间相关矩阵。

假设期望信号从 θ 0 θ_{0} θ0 方向入射,阵列接收信号为 x 0 ( n ) = a ( θ 0 ) s ( n ) x_{0}(n)=a(θ_{0})s(n) x0(n)=a(θ0)s(n) ,为了使 x 0 ( n ) x_{0}(n) x0(n) 通过空域滤波器后无失真,权矢量 w w w 需满足:
w H a ( θ 0 ) = 1 ( 1 − 3 ) w^{H}a(θ_{0})=1 (1-3) wHa(θ0)=113
选择的加权矢量 w w w 满足式(1-3)就可以实现对干扰信号以及噪声的抑制,从而使输出信号的平均功率 P ( θ ) P(θ) P(θ) 最小。由此可以建立目标优化方程为:
在这里插入图片描述
采用拉格朗日乘数法对式(1-4)构造代价函数为:
J ( w ) = w H R w + λ ( w H a ( θ 0 ) − 1 ) ( 1 − 5 ) J(w)=w^{H}Rw+λ(w^{H}a(θ_{0})-1) (1-5) J(w)=wHRw+λ(wHa(θ0)1)15
对式(1-5)关于 w w w 求梯度,并令其为零,得到:
▽ J ( w ) = 2 R w − 2 λ a ( θ 0 ) = 0 ( 1 − 6 ) ▽J(w)=2Rw-2λa(θ_{0})=0 (1-6) J(w)=2Rw2λa(θ0)=016
解得: w = λ R − 1 a ( θ 0 ) w=λR^{-1}a(θ_{0}) w=λR1a(θ0) ,将结果代入式(1-3)可得:
λ = 1 a H ( θ 0 ) R − 1 a ( θ 0 ) ( 1 − 7 ) λ=\frac{1}{a^{H}(θ_{0})R^{-1}a(θ_{0})} (1-7) λ=aH(θ0)R1a(θ0)117
将式(1-7)代入求得的权矢量结果中,可得到 MVDR 波束形成器的最优权向量为:
w o p t = R − 1 a ( θ 0 ) a H ( θ 0 ) R − 1 a ( θ 0 ) ( 1 − 8 ) w_{opt}=\frac{R^{-1}a(θ_{0})}{a^{H}(θ_{0})R^{-1}a(θ_{0})} (1-8) wopt=aH(θ0)R1a(θ0)R1a(θ0)18
以上就是 MVDR 波束形成求权值的完整过程。当阵列的阵元个数为 M M M 时,阵列的自由度为 M − 1 M-1 M1,所以 MVDR 波束形成器要求干扰源个数必须小于或等于 M − 1 M-1 M1
在实际情况中,阵列的接收数据协方差矩阵只能在有限次快拍的情况下,用时间平均对采样数据进行估计得到,即:
R ˆ = 1 N ∑ n = 1 N x ( n ) x H ( n ) ( 1 − 9 ) R^{ˆ}=\frac{1}{N}\sum_{n=1}^{N}x(n)x^{H}(n) (1-9) Rˆ=N1n=1Nx(n)xH(n)19
其中, N N N 是采样快拍数, N N N 值越大,估计矩阵 R ˆ R^{ˆ} Rˆ 更接近理想的相关矩阵 R R R

1.3 特点

1.3.1 优点

(1)高分辨率:MVDR算法能够有效地分辨出多个声源的方向,具有较高的分辨率。这使得它在处理复杂声学环境时能够提供更准确的声源定位信息。

(2)鲁棒性强:MVDR算法对噪声和混响信号具有较强的鲁棒性。在存在噪声和混响的环境中,该算法能够较好地保持对声源方向的估计能力,提高系统的稳定性和可靠性。

(3)计算量相对较小:相较于一些更复杂的算法,MVDR算法的计算量相对较小,这使得它在实时性要求较高的应用场景中具有一定的优势。

(4)干扰抑制能力强:MVDR算法通过最小化其他方向的信号功率,能够有效地抑制多径干扰和噪声,提高信号的质量。这在无线通信、声纳和雷达等领域尤为重要。

1.3.2 缺点

(1)远场假设限制:MVDR算法假设声源位于远场,即声源与麦克风阵列之间的距离远大于阵列的尺寸。这一假设限制了算法在近场声源定位中的应用,因为对于近场声源,算法的定位精度会显著下降。

(2)对导向矢量误差敏感:MVDR算法的性能在很大程度上依赖于导向矢量的准确性。如果导向矢量存在误差,将会对算法的估计结果产生较大影响,降低定位精度。

(3)阵列尺寸限制:MVDR算法的性能与阵列尺寸有关。一般来说,阵列尺寸越大,算法的性能越好。然而,在实际应用中,受到成本和空间等因素的限制,阵列尺寸往往无法做到足够大,这可能会限制算法的性能。

(4)计算复杂度较高:尽管相对于一些更复杂的算法而言,MVDR算法的计算量较小,但在实时性要求极高的应用场景中,其计算复杂度仍然可能成为一个挑战。此外,为了获得更好的性能,可能需要对算法进行进一步的优化和加速。

二、算法应用实例

2.1 信号的频率估计

仿真1:对目标信号的到达角进行估计
设一维均匀线阵的阵元数目为8,其间距为半波长,有3个目标信号的到达角分别为-30°,0°,20°,利用MVDR算法对该目标信号进行到达角估计,计算结果如下图所示。
在这里插入图片描述
读者可根据自己的需求,设置阵元数、目标信号个数及目标真实角度、信号的信噪比等条件进行实验。

2.2 MATLAB仿真代码

clc;
clear;
close all;%% MVDR算法估计到达角
d_lambda = 0.5;         % 阵元间距与波长比
Rx_Num = 8;             % 接收天线阵元数N = 1000;               % 采样快拍数
sigNum = 3;             % 信源数目
theta0 = [-30,0,20];     % 真实来波角度
snr = 10;               % 信噪比S = randn(sigNum,N)+1j*randn(sigNum,N);     % 远场窄带信号
A = exp(1j*2*pi*d_lambda*sind(theta0).'*(0:Rx_Num-1)).';     % 导向矢量
X = A*S;                            % 接收信号
Y = awgn(X,snr,'measured');         % 添加噪声的接收信号R = Y*Y'/N;         % 接收数据的协方差矩阵
R_ = inv(R);        % 协方差矩阵的逆矩阵thetaScan = (-90:0.1:90);       % 扫描角度范围
As = exp(1j*2*pi*d_lambda*sind(thetaScan).'*(0:Rx_Num-1)).';num = 0;
P = zeros(1,length(thetaScan));     % 谱峰函数初始化
for ii = thetaScannum = num+1;P(num) = 1/(As(:,num)'*R_*As(:,num));
end
P = 10*log10(abs(P)/max(abs(P)));   % 对谱峰函数进行归一化并取对数
figure;
plot(thetaScan,P,'b','LineWidth',1);xlabel('扫描角范围');ylabel('归一化幅度/dB');hold on
ylim = get(gca,'Ylim');
for jj = 1:sigNum% 画出真实波达角的值进行对比line([theta0(jj) theta0(jj)],[ylim(1) ylim(2)],'Color','r','LineStyle','--');hold on;
end
legend('MVDR估计值','真实值');

三、参考文献

[1] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proc. IEEE, 1969, 57(8): 1408-1418.
[2] Lacoss R T. Data adaptive spectral analysis methods[J]. Geophysics, 1971, 36(8): 661-675.
[3] 胡君丽.数字阵列接收同时多波束技术研究[D].电子科技大学,2019.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/379384.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新开源的解析效果非常好的PDF解析工具MinerU (pdf2md pdf2json)

毫不夸张的说 PDF解析工具MinerU是照进RAG黑暗中的一道光——这是我对它的评价。我测过太多了文档解析工具! 最近在做文档解析的工作。看了很多的开源的文档解析的工具,版面分析的工具,其中包括paddelpaddel这样30kstar的明星工具。但是效果都…

electron项目中实现视频下载保存到本地

第一种方式:用户自定义选择下载地址位置 渲染进程 // 渲染进程// 引入 import { ipcRenderer } from "electron";// 列表行数据下载视频操作,diffVideoUrl 是视频请求地址 handleDownloadClick(row) {if (!row.diffVideoUrl) {this.$message…

【数据结构】二叉树———Lesson2

Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…

网安小贴士(17)认证技术原理应用

前言 认证技术原理及其应用是信息安全领域的重要组成部分,涉及多个方面,包括认证概念、认证依据、认证机制、认证类型以及具体的认证技术方法等。以下是对认证技术原理及应用的详细阐述: 一、认证概述 1. 认证概念 认证是一个实体向另一个实…

【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析

初阶数据结构相关知识点可以通过点击以下链接进行学习一起加油!时间与空间复杂度的深度剖析深入解析顺序表:探索底层逻辑深入解析单链表:探索底层逻辑深入解析带头双向循环链表:探索底层逻辑深入解析栈:探索底层逻辑深入解析队列:探索底层逻辑深入解析循环队列:探索…

Chromium CI/CD 之Jenkins实用指南2024 - 常见的构建错误(六)

1. 引言 在前一篇《Chromium CI/CD 之 Jenkins - 发送任务到Ubuntu(五)》中,我们详细讲解了如何将Jenkins任务发送到Ubuntu节点执行,并成功验证了文件的传输和回传。这些操作帮助您充分利用远程节点资源,提升了构建和…

CrossKD: Cross-Head Knowledge Distillation for Dense Object Detection

CrossKD:用于密集目标检测的交叉头知识蒸馏 论文链接:https://arxiv.org/abs/2306.11369v2 项目链接:https://github.com/jbwang1997/CrossKD Abstract 知识蒸馏(Knowledge Distillation, KD)是一种有效的学习紧凑目标检测器的模型压缩技术…

Uniapp 组件 props 属性为 undefined

问题 props 里的属性值都是 undefined 代码 可能的原因 组件的名字要这样写,这个官方文档有说明

【转盘案例-弹框-修改Bug-完成 Objective-C语言】

一、我们来看示例程序啊 1.旋转完了以后,它会弹一个框,这个框,是啥, Alert 啊,AlertView 也行, AlertView,跟大家说过,是吧,演示过的啊,然后,我们就用iOS9来做了啊,完成了以后,我们要去弹一个框, // 弹框 UIAlertController *alertController = [UIAlertContr…

爬虫案例(读书网)(下)

上篇链接: CSDN-读书网https://mp.csdn.net/mp_blog/creation/editor/139306808 可以看见基本的全部信息:如(author、bookname、link.....) 写下代码如下: import requests from bs4 import BeautifulSoup from lxml import etreeheaders{…

【中项】系统集成项目管理工程师-第2章 信息技术发展-2.1信息技术及其发展-2.1.1计算机软硬件与2.1.2计算机网络

前言:系统集成项目管理工程师专业,现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。 软考同样是国家人社部和工信部组织的国家级考试,全称为“全国计算机与软件专业技术资格(水平)考试”&…

内部类+图书管理系统

内部类图书管理系统 1. 实例内部类1.1 实例内部类的结构1.2 实例内部类的一些问题1.2.1 如何在main中创建实例内部类对象?1.2.2 内部类成员变量被static修饰问题?1.2.3 内部类和外部类变量重名的调用问题?1.2.4 外部类访问内部类变量的问题 2…

HiFi-GAN——基于 GAN 的声码器,能在单 GPU 上生成 22 KHz 音频

拟议的 HiFiGAN 可从中间表征生成原始波形 源码地址:https://github.com/NVIDIA/DeepLearningExamples 论文地址:https://arxiv.org/pdf/2010.05646.pdf 研究要点包括 **挑战:**基于 GAN 的语音波形生成方法在质量上不及自回归模型和基于流…

Linux网络——TcpServer

一、UDP 与 TCP 在现实生活中,Udp 类似于发传单,Tcp 类似于邮局的挂号信服务。 1.1 UDP(用户数据报协议) 无连接:发放传单时,你不需要提前和接受传单的人建立联系,直接把传单发出去。不可靠&…

Spring Boot1(概要 入门 Spring Boot 核心配置 YAML JSR303数据校验 )

目录 一、Spring Boot概要 1. SpringBoot优点 2. SpringBoot缺点 二、Spring Boot入门开发 1. 第一个SpringBoot项目 项目创建方式一:使用 IDEA 直接创建项目 项目创建方式二:使用Spring Initializr 的 Web页面创建项目 (了解&#…

低代码中间件学习体验分享:业务系统的创新引擎

前言 星云低代码平台介绍 星云低代码中间件主要面向企业IT部门、软件实施部门的低代码开发平台,无需学习开发语言/技术框架,可视化开发PC网页/PC项目/小程序/安卓/IOS原生移动应用,低门槛,高效率。针对企业研发部门人员少&#…

Vue3 + uni-app 微信小程序:仿知乎日报详情页设计及实现

引言 在移动互联网时代,信息的获取变得越来越便捷,而知乎日报作为一款高质量内容聚合平台,深受广大用户喜爱。本文将详细介绍如何利用Vue 3框架结合微信小程序的特性,设计并实现一个功能完备、界面美观的知乎日报详情页。我们将从…

使用Python和Pandas进行数据分析:入门与实践

目录 引言 准备工作 安装Python与Pandas 导入Pandas库 Pandas基础 数据结构 创建Series和DataFrame 读取数据 数据探索 查看数据 数据清洗 数据可视化 实战案例:分析销售数据 引言 在当今数据驱动的时代,数据分析已成为各行各业不可或缺的…

数据结构(单链表算法题)

1.删除链表中等于给定值 val 的所有节点。 OJ链接 typedef struct ListNode ListNode;struct ListNode {int val;struct ListNode* next; };struct ListNode* removeElements(struct ListNode* head, int val) {//创建新链表ListNode* newhead, *newtail;newhead newtail N…

解决TypeError: __init__() takes 1 positional argument but 2 were given

问题描述: 如下图,在使用torch.nn.Sigmoid非线性激活时报错 源代码: class testrelu(nn.Module):def __init__(self):super().__init__()self.sigmoid Sigmoid()def forward(self, input):output self.sigmoid(input)return outputwriter…