地图项目涉及知识点总结

序:最近做了一个在地图上标记点的项目,用户要求是在地图上显示百万量级的标记点,并且地图仍要可用(能拖拽,能缩放)。调研了不少方法和方案,最终实现了相对流畅的地图系统,加载耗时用户也可以接受,学到了不少知识,这里做一个总结

(PS:工作这几年,工程能力有没有提升不知道,数学能力绝对是飞速下降,简单的数据线性变换竟然要想半天,看来平时还是训练的太少了,不管是数据结构还是算法都完全没跟上)

技术栈

前端:vue + 高德地图js api 1.4
后端:springcloud
数据库:mongo
数据处理:pandas

一、前期调研,确定思路

用户提供的原始数据高达一亿,同屏出现的点的数量可能能到百万,就算把完全重合的点都去重也还是有近十万,且不说数据的时延,前端浏览器承载这么大的数据量本身就不太现实。经过各种调研,确认无论是百度地图、高德地图还是openlayers、leaflet这样的框架都很难支撑万级以上的数据量的绘制。就算绘制完成,地图也基本处于一个没法用的状态了。

和同事讨论后确定了整体方案:

1、数据处理

在不同的缩放等级下,对原始数据进行采样,以1x1或者2x2像素代表的经纬度范围为一组取其中一个随机数据(后来在用户的要求下改为求均值),在放到足够大(zoom16以上)后不再采样,展示原始数据

关于采样间隔的选择,在不同的缩放等级下进行计算。以zoom=11为例,一个像素表示的经纬度范围约为0.0006,那我们选择以0.001的间隔采样,绘图的时候以4个像素来表示一个点就比较合理。

如果想要更精细的绘图,那么就减小采样的间隔,与之相对的得到的数据规模就会更大,网页响应也就越慢。因此需要在性能和精准方面做一个取舍。

2、数据存储

对每个缩放等级下采样数据进行分表,随着缩放等级的增大,数据也越来越多,为了保证查询的效率采用四分法分表存储。
在zoom=11时,用一张表存储,zoom=12时用4张表,依此类推。到zoom=16时,分1024张表存储,后面我还建立了一张索引表,用来查询屏幕显示的经纬度范围所涉及的表有哪些。

数据库方面选择了mongodb,主要是看中了支持地理位置索引,可以快速查询地理位置上包围、相交的点的集合。

3、前端展示

经过测试,在高德地图和百度上绘制的海量点图层,当数据超过3w时地图的卡顿就会非常明显,想要容纳10w级的数据,不管是框架的性能和浏览器的内存都顶不住,因此想到在后端先把图片渲染好,然后传输到前端展示一个图层即可。

在缩放等级达到一定大小后,如zoom=16,屏幕内的数据规模去重后降低到1~2w这个数量级,再使用地图的标记物来绘制,用户可以和标记物进行交互。

基于以上思想开始了工作,中途学习很多新的东西,也踩了不少坑

二、数据处理

数据处理方面主要就使用pandas来读取用户提供的csv文件,然后经过采样后再保存到数据库里

pandas用了一个第三方库modin来加速,可以把电脑的cpu直接干满,大大节省了时间。1亿的数据两个小时不到就处理完成了

主要用的语法有

读取csv文件的指定列并指定分割符

df = pd.read_csv(path,sep='\t', usecols=[0, 1, 7, 9, 11, 13])

apply方法转换某两列的数据

df['grid_lon'], df['grid_lat'] = zip(*df[['Longitude', 'Latitude']].apply(lambda row: lat_lng_to_grid(row[0], row[1], grid_size), axis=1))

pandas分组求均值

concat_df.groupby(['grid_lon','grid_lat']).mean()

df舍弃列

df = df.drop(columns=['grid_lon', 'grid_lat','Longitude','Latitude'])

另外还涉及到python连接mongo数据库,使用pymongo

注意在插入数据前,需要先把df转换成字典列表

client = MongoClient("mongodb://admin@localhost:27017/?authSource=map", username="admin",password="admin")
db = client["map"]
collection = db["map_index"]
collection.insert_one(map_data)

检查索引是否存在,如果不存在则建立2d索引

indexes = collection.list_indexes()
index_exists = any(index['name'] == index_name for index in indexes)
if not index_exists:collection.create_index([('lnglat', '2d')])

除此之外,如果数据使用的是国际坐标系wgs84,直接标记在国内的地图上是不准的,还需要转换成国内坐标系,即火星坐标系,转换方法在网上有比较详细的过程,这里就不赘述了

三、mongo数据库的使用

mongo数据库之前没有接触过,这是一个NoSQL的数据库,数据在库中被称为文档,每个文档的结构可以是不相同的,不需要有固定的结构,这也是NoSQL数据库的显著特征之一。

回到我们的项目,mongo数据库支持两种地理位置相关的索引,2d索引和2dSphere,二者的区别在于2d索引除了表示地理位置的经纬度之外,还用在平面地图相关的场景中,比如游戏的地图坐标等等。2dSphere则用于球形表面的位置存储。

在球形坐标上使用2d索引得到的结果不一定正确,在官方的文档中提到,如果要使用 $nearSphere(指定地理空间查询要按从最近到最远的顺序为其返回文档的点)这样和距离计算有关的查询,最好使用2dShere索引。在极点附近使用2d索引来判断位置也会出现错误。

两种索引的不同还体现在对查询语句的支持上。像$box这样的查询就只支持2d索引。具体可以阅读官方文档

https://www.mongodb.com/zh-cn/docs/manual/reference/operator/query-geospatial/

在这里插入图片描述

在本项目中不涉及到实际距离的计算,坐标位置也不在极点,因此使用2d索引也是可行的。在查询哪些区域和屏幕显示区域相交时,需要用到$geoIntersects,因此表的索引表建立的是2dSphere索引。

用到的查询语法

1、建立索引

db.sampled_11_0.createIndex({'lnglat':'2d'})

2、矩形区域内查询

db.sampled_11_0.find({"lnglat": {"$geoWithin": {"$box": [[113.728815,22.287244],[115.35306,23.015874]]}}
})

3、geoJson格式数据

注意 geoJson表示多边形的时候,起始点和结尾点必须相同

{"name":"mean_sampled_11_0","zoom":zoom,"box":{"type":"Polygon","coordinates":[[[mg_min_lng,mg_min_lat],[mg_min_lng,mg_max_lat],[mg_max_lng,mg_max_lat],[mg_max_lng,mg_min_lat],[mg_min_lng,mg_min_lat]]]}}

4、多边形相交

使用2dSphere索引时,查询语句中也是一个geoJson,下图中的示例代表一个多边形,查询与该多边形相交的数据

{<location field>: {$geoIntersects: {$geometry: {type: "Polygon" ,coordinates: [ <coordinates> ]}}}
}

四、数据查询&展示

数据完成处理并且入库后,我们搭好前后端的基本框架,就可以开始编写查询数据 -> 展示数据的代码了

前端

前端我们使用的是高德地图js api 1.4.5 不使用最新的2.0的原因是js api 2.0的缩放,zoom的步长不太好调整,而我们这次的项目只需要整数级别缩放即可。

地图api的使用,查看官方文档即可学会,并且官方还有在线调试的功能,非常的好用。如果遇到了问题,直接提工单,很快就会有工程师响应,不愧是大厂

初始化地图

initAMap() {window._AMapSecurityConfig = {securityJsCode: "*****************************",};AMapLoader.load({key: "******************************", // 申请好的Web端开发者Key,首次调用 load 时必填version: "1.4.15", // 指定要加载的 JSAPI 的版本,缺省时默认为 1.4.15plugins: ["AMap.Scale"], //需要使用的的插件列表,如比例尺'AMap.Scale',支持添加多个如:['...','...']}).then((AMap) => {this.AMap = AMapthis.map = new this.AMap.Map("container", {// 设置地图容器idresizeEnable: true,viewMode: "2D", // 是否为3D地图模式expandZoomRange:true,zoom: 10, // 初始化地图级别zooms: [3,20],center: [114.211168, 22.566057], // 初始化地图中心点位置});var scale = new AMap.Scale({visible: true,position: 'LT'})this.map.addControl(scale)this.map.on('movestart',this.clearMap)this.map.on('moveend',this.addPictureDebounce)})},

添加一个图片图层

var imageLayer = new this.AMap.ImageLayer({url: imageUrl, //图片 Urlbounds: new this.AMap.Bounds([minLng,minLat], [maxLng,maxLat]), //图片范围大小的经纬度,传入西南和东北的经纬度坐标zIndex: zoom, //图层的层级zooms: [3, 20], //设置可见级别,[最小级别,最大级别]})this.map.add(imageLayer)

添加海量点图层

var massMarks = new this.AMap.MassMarks(this.pointData,{zIndex: 100,zooms: [3,20],style: style,opacity: 0.8})massMarks.on('click',function (e){// 点击标记物的业务逻辑})massMarks.setMap(this.map)

后端

后端我们使用springcloud框架,需要实现的功能是,根据前端任意时刻的屏幕大小、经纬度范围等请求参数,找出范围内的数据,绘制一张png图片或者直接把数据发到前端。在这个项目中,我们在zoom小于16时进行后端绘图,在zoom大于等于16时将去重后的数据发送到前端。

java连接mongodb,需要引入第三方库

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>

springCloud配置 如果只需要连接一个数据库,那么可以进行如下配置,mongoTemplate实例会自动加载

spring:application:name: map-servicedata:mongodb:host:xxxxxport:xxxxxusername:xxxxxpassword:xxxxxdatabase:xxxxx

使用时直接注入mongoTemplate即可

@Autowired
private MongoTemplate mongoTemplate;

如果想要配置多个数据源,则需要自己写配置类来生成不同的mongoTemplate实例

spring:application:name: map-servicedata:mongodb:shenzhenTemplate:uri: mongodb://admin:admin@localhost:27017/mapbeijingTemplate:uri: mongodb://admin:admin@localhost:27017/map_beijing
public abstract class AbstractMongoClient {public MongoDatabaseFactory mongoDatabaseFactory(String uri) {return new SimpleMongoClientDatabaseFactory(uri);}
}@Configuration
@Component
public class MongoTemplateConfigBJ extends AbstractMongoClient{@Value("${spring.data.mongodb.beijingTemplate.uri}")private String uri;@Bean(name = "beijingTemplate")public MongoTemplate mongoTemplate() {return new MongoTemplate(mongoDatabaseFactory(uri));}
}@Configuration
@Component
public class MongoTemplateConfigSZ extends AbstractMongoClient{@Value("${spring.data.mongodb.shenzhenTemplate.uri}")private String uri;@Primary@Bean(name = "shenzhenTemplate")public MongoTemplate mongoTemplate() {return new MongoTemplate(mongoDatabaseFactory(uri));}
}// 使用时@Autowired@Qualifier("shenzhenTemplate")private MongoTemplate mongoTemplate;@Autowired@Qualifier("beijingTemplate")private MongoTemplate beijingTemplate;

查询数据时,有多种方法可以使用,这里使用的是构造BasicDBObject的方法,这样写的好处是和mongo数据库的查询语句比较相似,容易理解

MongoCursor cursor是一个可迭代的对象,遍历它即可获取查询到的所有数据

BasicDBObject box = new BasicDBObject().append("$box",new double[][]{new double[]{minLng,minLat},new double[]{maxLng,maxLat}});BasicDBObject query = new BasicDBObject().append("lnglat", new BasicDBObject("$geoWithin",box));long start = System.currentTimeMillis();MongoCursor<Document> cursor =  mongoTemplate.getCollection("mean_sampled_11_0").find(query).iterator();Document document;while ( cursor.hasNext() ) {document = cursor.next();}

在前端请求发到后端时,由于在前面处理数据时我们做了分表处理,要先得到本次查询和哪些表相关。

public List<String> findCollectionNameList(Double minLng,Double maxLng,Double minLat,Double maxLat,Integer zoom,MongoTemplate mongoTemplate) {// 构建一个geoJson 查询哪些表的范围和这个矩形相交GeoJsonPolygon geoJsonPolygon = new GeoJsonPolygon(new Point(minLng,minLat),new Point(minLng,maxLat),new Point(maxLng,maxLat),new Point(maxLng,minLat),new Point(minLng,minLat));if (zoom < 11) {zoom = 11;}if (zoom > 16) {zoom = 16;}// 这里用了另一种写法 直接查出来数据Criteria criteria = Criteria.where("box").intersects(geoJsonPolygon);List<LinkedHashMap> objects = mongoTemplate.find(new Query(criteria).addCriteria(new Criteria("zoom").is(zoom)),LinkedHashMap.class,"map_index");List<String> results = objects.stream().map(x ->(String) x.get("name")).collect(Collectors.toList());return results;}

得到了本次查询需要的表后,我们从这些表中查询数据。拿到数据后,我们再采取方法将数据转换为屏幕上的点,这里没有考虑地球投影导致的误差,直接使用线性变换找到每一个经纬度数据在屏幕上应该出现的位置

int screenX = (int) ((lng - minLng) * pixelsPerLngDegree);
int screenY = (int) (high / pixelPerGrid - (lat - minLat) * pixelsPerLatDegree);
if (screenX == width / pixelPerGrid) {screenX = width / pixelPerGrid -1;
}
if (screenY == high / pixelPerGrid) {screenY =  high / pixelPerGrid -1;
}
// 判断颜色
Integer color = judgeColor(value,pointValue);
// 计算像素点的位置
Integer location = screenY * width / pixelPerGrid + screenX;

随后,如果需要后端作图,我们还需要掌握java中生成png图片的方法。这里也有多种方法。

1、直接操作像素

生成一个width x height大小的数组,这个数组就代表了这幅图每个像素点的颜色,颜色可以用16进制数表示也可以用RGBA表示

我们根据之前换算出的数据,确定每一个像素点的颜色,然后给BufferedImage实例赋值,就完成了png图片的绘制

// 将所有数据转换到屏幕点上BufferedImage image = new BufferedImage(width, high, BufferedImage.TYPE_INT_ARGB);int[] pixels = new int[width * high];for (Integer location : pointMap.keySet()) {List<Integer> groupList = pointMap.get(location);int color = groupList.get(0);if (groupList.size() > 0) {color = groupList.get(ThreadLocalRandom.current().nextInt(0,groupList.size()));}// 由于4个像素代表一个格子 需要计算在第几列第几排int y = (int) location / (width / pixelPerGrid);int x = (int) location % (width / pixelPerGrid);// 得到第一个点的位置int firstPointLocation = width * pixelPerGrid * y + x * pixelPerGrid;// 绘制点上去for (int i = 0; i < pixelPerGrid;i ++) {for (int j =0;j < pixelPerGrid;j++) {pixels[firstPointLocation + width * i + j] = COLOR_LIST[color];}}}image.setRGB(0, 0, width, high, pixels, 0, width);return image;

如果要导出图片,使用

ImageIO.write(image,"png",new File(filePath));

如果要发送回到前端,使用

OutputStream out = response.getOutputStream();
ImageIO.write(image,"png",out);

注:JDK8存在bug,ImageIO.write这个方法耗时很长,这个bug在JDK11完成了修复 如果想要使用需要升级JDK版本

2、使用Graphics2D

使用Graphics2D也可以完成画图,如

@Testpublic void drawCirclePng() throws IOException {Color circleColor = new Color(0xFFFF3300);BufferedImage image = new BufferedImage(100, 100, BufferedImage.TYPE_INT_ARGB);Graphics2D g2d = image.createGraphics();g2d.setColor(Color.white);g2d.fillRect(0,0,100,100);g2d.setRenderingHint(java.awt.RenderingHints.KEY_ANTIALIASING, java.awt.RenderingHints.VALUE_ANTIALIAS_ON);g2d.setColor(circleColor);g2d.fillRect(5, 5, 1, 1);g2d.dispose();File outputFile = new File("rect_test.png");ImageIO.write(image, "png", outputFile);}

这里没有做细致研究,大致看了一下画图的方法,如果要用就得看官方文档了解下

五、优化体验

上面的步骤完成后,前端或将图片作为单独的图层显示出来,或直接进行海量点标记都已经完成了用户的需求,数据量一直控制在前端可以比较流畅运行的范围内。

另外我们还可以做一下优化,让用户体验更好

1、分块加载

虽然说我们已经做了采样 + 分表,但是由于原始数据规模巨大,数据库的单个集合数据量仍然是百万级,在这种情况下等待数据全部查询完,完成绘制恐怕还是要10s以上的时间,主要耗时在数据查询阶段。为此我们可以参考这些地图厂家的做法。

地图的每个瓦片都是分开查询加载的,我们在查询某个区域时,也可以把屏幕可见的经纬度范围分成多个区域,比如我这里分成了8块区域,同时发送请求查询数据,这样大大减少了用户等待的时间。

2、防抖 + 取消过期请求

我们在每次地图发生拖拽、缩放的时候,由于屏幕展示的经纬度范围发生了变化,因此需要重新获取数据。高德地图的api触发事件非常频繁,鼠标滚动几下能触发好几次事件。这时候如果每次都触发了请求,占用资源不说,得到的数据也已经过期了,如果还绘制在屏幕上,虽然是一闪而过,用户体验也是不好的。

接口防抖的技术已经非常成熟了,在各种下拉框筛选等可能会频繁触发接口的地方都有用到。这里我们使用一个第三方库来实现

import { debounce } from 'lodash'
addPictureDebounce: debounce(function () {this.addPicture()}, 500),
addPicture() {// 发起请求
}

如此一来 在事件触发后,如果500ms内没有再次触发该事件,才会调用发起请求的方法

500ms的时间很短,有的时候还是不可避免的触发了多次请求,或者上一次请求还没完成用户又拖动了地图该怎么办呢?我们理想的逻辑是,之前没完成的请求最好是丢弃掉。

这里使用axios的取消请求方法来实现

var controller = new AbortController()
this.abortControllerList.push(controller)
axios.post('map-service/map/getPointPng',{// 各种参数
},{responseType: 'blob',signal: controller.signal}).then(response => {
// 各种业务逻辑
})

这里我们将每个axios请求的congtroller都记录下,在下一次接口触发时,先把上次的请求全部丢弃

 this.abortControllerList.forEach(controller => {controller.abort()})

这样一来,过期的请求就不会在干扰我们的业务逻辑了

六、总结

这次项目,对我的各方面能力都是一次挑战,最难绷的还是各种数据的变换算不明白了,哎,真是菜的离谱

不管怎么样,还得勤学苦练,好好努力啊

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/379571.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32全栈嵌入式人脸识别考勤系统:融合OpenCV、Qt和SQLite的解决方案

1. 项目概述 本项目旨在设计并实现一个基于STM32的全栈人脸识别考勤系统。该系统结合了嵌入式开发、计算机视觉和数据库技术&#xff0c;实现了自动人脸检测、识别和考勤记录功能。 主要特点: 使用STM32F4系列微控制器作为主控制器采用OpenCV进行人脸检测和识别Qt开发跨平台…

数据结构 day3

目录 思维导图&#xff1a; 学习内容&#xff1a; 1. 顺序表 1.1 概念 1.2 有关顺序表的操作 1.2.1 创建顺序表 1.2.2 顺序表判空和判断满 1.2.3 向顺序表中添加元素 1.2.4 遍历顺序表 1.2.5 顺序表按位置进行插入元素 1.2.6 顺序表任意位置删除元素 1.2.7 按值进…

Xcode 16 beta3 真机调试找不到 Apple Watch 的尝试解决

很多小伙伴们想用 Xcode 在 Apple Watch 真机上调试运行 App 时却发现&#xff1a;在 Xcode 设备管理器中压根找不到对应的 Apple Watch 设备。 大家是否已将 Apple Watch 和 Mac 都重启一万多遍了&#xff0c;还是束手无策。 Apple Watch not showing in XCodeApple Watch wo…

PHP手边酒店多商户版平台小程序系统源码

&#x1f3e8;【旅行新宠】手边酒店多商户版小程序&#xff0c;一键解锁住宿新体验&#xff01;&#x1f6cc; &#x1f308;【开篇&#xff1a;旅行新伴侣&#xff0c;尽在掌握】&#x1f308; 还在为旅行中的住宿选择而纠结吗&#xff1f;是时候告别繁琐的搜索和比价过程&a…

电脑屏幕录制怎么弄?分享3个简单的电脑录屏方法

在信息爆炸的时代&#xff0c;屏幕上的每一个画面都可能成为我们生活中不可或缺的记忆。作为一名年轻男性&#xff0c;我对于录屏软件的需求可以说是既挑剔又实际。今天&#xff0c;我就为大家分享一下我近期体验的三款录屏软件&#xff1a;福昕录屏大师、转转大师录屏大师和OB…

TikTok账号矩阵运营怎么做?

这几年&#xff0c;聊到出海避不过海外抖音&#xff0c;也就是TikTok&#xff0c;聊到TikTok电商直播就离不开账号矩阵&#xff1b; 在TikTok上&#xff0c;矩阵养号已经成为了出海电商人的流行策略&#xff0c;归根结底还是因为矩阵养号可以用最小的力&#xff0c;获得更大的…

FastAPI 学习之路(五十)WebSockets(六)聊天室完善

我们这次只是对于之前的功能做下优化&#xff0c;顺便利用下之前的操作数据的接口&#xff0c;使用下数据库的练习。 在聊天里会有一个上线的概念。上线要通知大家&#xff0c;下线也要通知大家谁离开了&#xff0c;基于此功能我们完善下代码。 首先&#xff0c;我们的登录用…

初识langchain[1]:Langchain实战教学,利用qwen2.1与GLM-4大模型构建智能解决方案[含Agent、tavily面向AI搜索]

初识langchain[1]&#xff1a;Langchain实战教学&#xff0c;利用qwen2.1与GLM-4大模型构建智能解决方案 1.大模型基础知识 大模型三大重点&#xff1a;算力、数据、算法&#xff0c;ReAct &#xff08;reason推理act行动&#xff09;–思维链 Langchain会把上述流程串起来&a…

[Maven] 打包编译本地Jar包报错的几种解决办法

目录 方式1&#xff1a;通过scope指定 方式2&#xff1a;通过新建lib 方式3&#xff1a;通过build节点打包依赖​​​​​​​ 方式4&#xff1a;安装Jar包到本地 方式5&#xff1a;发布到远程私有仓库 方式6&#xff1a;删除_remote.repositories 方式7&#xff1a;打包…

vscode+wsl2+anaconda环境的配置与使用

目录 下载anaconda Anaconda使用参考 vscodeubuntuanaconda 先用vscode连接本地ubuntu。 如果没有安装wsl2与ubuntu&#xff0c;可点击下面的链接。 问题&#xff1a;wsl install 无法解析服务器 成功记录&#xff1a; 在vscode终端用ubuntu安装anaconda。 创建pytho…

[word] word表格跨页断开实现教程 #职场发展#媒体

word表格跨页断开实现教程 选中整个word表格 单击鼠标右键&#xff0c;选择“表格属性”选项 切换至“行”标签&#xff0c;找到“允许跨页断行”选项 勾选上“允许跨页断行”&#xff0c;单击“确定”按钮&#xff0c;完成&#xff01; word表格跨页断开实现教程的下载地址&a…

微信小程序密码 显示隐藏 真机兼容问题

之前使用type来控制&#xff0c;发现不行&#xff0c;修改为password属性即可 <van-fieldright-icon"{{passwordType password? closed-eye:eye-o}}"model:value"{{ password }}"password"{{passwordType password ? true: false}}"borde…

一款IM即时通讯聊天系统源码,包含app和后台源码

一款IM即时通讯聊天系统源码 聊天APP 附APP&#xff0c;后端是基于spring boot开发的。 这是一款独立服务器部署的即时通讯解决方案&#xff0c;可以帮助你快速拥有一套自己的移动社交、 企业办公、多功能业务产品。可以 独立部署&#xff01;加密通道&#xff01;牢牢掌握通…

水域救援装备的详细简介_鼎跃安全

水域救援行动需要救援人员配备全面、专业的装备&#xff0c;以应对各种复杂的水域环境和救援任务。水域救援套装应运而生&#xff0c;它集合了水域救援所需的各类关键装备&#xff0c;为救援人员提供全方位的保护和辅助&#xff0c;确保数援行动的高效与安全。 水域救援头盔&am…

基于语音识别的会议记录系统

文章目录 核心功能页面展示使用技术方案功能结构设计数据库表展示 核心功能页面展示 视频展示功能 1.创建会议 在开始会议之前需要管理员先创建一个会议&#xff0c;为了能够快速开始会议&#xff0c;仅需填写会议的名称、会议举办小组、会议背景等简要会议信息即可成功创建。…

CTF-Web习题:[HFCTF2021]Unsetme

题目链接&#xff1a;[HFCTF2021]Unsetme 解题思路 打开靶场发现是一段PHP源码 做一下代码审阅&#xff1a; <?php// Kickstart the framework $f3require(lib/base.php);//引入f3框架源码$f3->set(DEBUG,1);//f3对象设置DEBUG属性 if ((float)PCRE_VERSION<8.0)…

中科微电子ATGM336H GPS定位模块STM32应用

文章目录 前言1. 中科微电子ATGM336H的使用1.1 ATGM336H引脚说明1.2 数据帧介绍1.3 经纬度介绍1.4 ATGM336H的启动方式 2 数据处理前置C语言知识2.1 strstr函数2.2 memset函数2.3 memcpy函数2.4strtod函数 3. 开始移植3.1 usart初始化程序3.2 串口中断接收函数3.4 数据帧的解析…

Leetcode算法题(移除链表中的元素)

题目如下&#xff1a; 思路1&#xff1a;创建一个新的带头链表 &#xff08;newhead&#xff09;&#xff0c;遍历头结点对应的值分别于x进行比较&#xff0c;将不等于x的节点尾插到新的带头链表中&#xff0c;返回新的带头链表的下一个节点。 代码如下&#xff1a; typedef …

路由数据获取及封装方法

数据库设计 自联表 定义tree字段 public class LabelValue{public int label { get; set; }public string? value { get; set; }public List<LabelValue> children { get; set; }}获取路由方法 public Response<object> getMenuList() {Response<object>…

RK3568笔记四十:设备树

若该文为原创文章&#xff0c;转载请注明原文出处。 一、介绍 设备树 (Device Tree) 的作用就是描述一个硬件平台的硬件资源&#xff0c;一般描述那些不能动态探测到的设备&#xff0c;可以被动态探测到的设备是不需要描述。 设备树可以被 bootloader(uboot) 传递到内核&#x…