【数据结构】链表(LinkedList)详解

文章目录

    • @[toc]
  • 前言
  • 1. 链表的介绍
    • 1.1 链表的定义
    • 1.2 链表的结构种类
  • 2. 单向链表的模拟实现
    • 2.1 创建链表
    • 2.2 打印链表
    • 2.3 求链表长度
  • 3. 单向链表常见方法的模拟实现
    • 3.1 头插法
    • 3.2 尾插法
    • 3.3 指定位置插入
    • 3.4 查找值 key 的节点是否在链表中
    • 3.5 删除值为 key 的节点
    • 3.6 删除所有值为 key 的节点
    • 3.7 清空链表
  • 4. 双向链表的模拟实现
  • 5. 双向链表常见方法的模拟实现
    • 5.1 头插法
    • 5.2 尾插法
    • 5.3 指定位置插入
    • 5.4 删除值为 key 的节点
    • 5.5 删除所有值为 key 的节点
    • 5.6 清空链表
  • 6. LinkedList 常见方法的使用
    • 6.1 构造方法
    • 6.2 常见方法
    • 6.3 遍历 LinkedList
  • 7. ArrayList 和 LinkedList 的区别
  • 结语

前言

我们之前学习过顺序表,也学习了 ArrayList 类的使用,它们的本质实际上就是数组。而今天我们要介绍的链表和它们都不一样,它解决了 ArrayList 不适用做任意位置插入和删除的缺点,链表不需要将元素整体向前或者向后搬移,插入和删除都十分方便,接下来就让我们一起来认识链表吧


1. 链表的介绍

1.1 链表的定义

链表是由多个地址不连续的存储节点连接而成的一种线性表,这些节点在内存中不是连续存放的,每个节点不仅存放实际的数据(数据域),而且包含下一个节点的地址信息(地址域,也叫做指针域)

image-20240630134333571

注意:

  • 链表在逻辑结构上是连续的,在物理结构上不一定连续(和顺序表不一样)
  • 节点的地址域可以存储下一个节点的地址,最后一个节点的地址域为 null
  • 因为创建节点的申请是在堆上的,两次申请的空间可能连续,也可能不连续,它们通常分散在内存中的任何位置

1.2 链表的结构种类

我们可以根据是否带头节点、单向或双向链接、以及是否循环来分类,一共有八种类型,每种类型都有其独特的特点


  1. 带头节点或不带头节点
    image-20240630143946033

    • 带头链表:最前面有一个头节点,称作“哨兵位”,它不存储数据,用来指向第一个存储有效数据的节点
    • 不带头链表:直接从第一个节点开始,没有额外的头节点

  2. 单向或者双向
    image-20240630144248529

    • 单向链表:每个节点只包含一个指向下一个节点的地址。它只能从前往后遍历,不能从后往前遍历
    • 双向链表:每个节点包含两个地址,一个指向前一个节点,一个指向后一个节点。它可以从任一节点开始向前或向后遍历

  3. 循环或者非循环

    image-20240630144632991

    • 循环链表:链表的最后一个节点的地址域指向链表的第一个节点,形成一个闭环
    • 非循环链表:链表的最后一个节点的地址域为空(null),表示链表的结束

在上面八种组合中,我们主要介绍的是:无头单向非循环链表,无头双向非循环链表

  • 无头单向非循环链表:结构简单,是一种非常灵活的数据结构,适用于多种不同的应用场景,我们在力扣上刷链表题遇到最多的就是这种类型,也经常出现在很多笔试面试中
  • 无头双向非循环链表:在需要双向遍历和频繁修改链表结构的场景中非常有用,而且在 Java 的集合中 LinkedList 的底层就是无头双向非循环链表

2. 单向链表的模拟实现


请注意,以下的链表默认为 无头单向非循环

链表是由若干个节点组成的,而节点又是个完整的结构,包含数据域和地址域,所以我们可以把节点定义为内部类,这样就可以更方便的使用节点

除此之外,我们还需要定义成员变量 head,用来指向第一个节点。因为它是链表的属性,所以应该定义在节点内部类的外面

// 我们创建一个 MySingleLinkedList 类
public class MySingleLinkedList {//内部类-节点static class ListNode {public int val; //数据域public ListNode next; //地址域public ListNode(int val) {this.val = val;}}//链表的头节点public ListNode head;
}

2.1 创建链表

接着我们可以来创建链表,此处先展示比较简单的方法:创建一个个节点,再按顺序连接起来

问题是,我们要怎么让第一个节点和第二个节点进行关联?

	node1.next = node2;

原因:node1 指向的是节点对象,可以使用 . 来访问里面的成员属性 next,node2 引用的是完整的对象,它会存储自己所存储位置的地址

    //创建链表public void createList() {ListNode node1 = new ListNode(11);ListNode node2 = new ListNode(22);ListNode node3 = new ListNode(33);ListNode node4 = new ListNode(44);//将前一个节点的 next 赋值为下一个节点的地址node1.next = node2;node2.next = node3;node3.next = node4;//最后让 head 赋值为第一个节点this.head = node1;}//最后可以使用 head 来引出整个链表

分析

  • 我们创建 node1 到 node4 共四个节点,再将 next 赋值为下一个节点的地址。node4 的节点因为没有赋值,默认为 null,标志链表的结尾。最后再将 head 为赋值 node1 的地址,就完成了最简单的链表创建
  • 出了该方法后,因为node 是局部变量,因此它们都会消失,我们就可以使用 head 来引出整个链表

测试:debug 一下

image-20240630160629429

image-20240630160644954

(这是一个比较粗糙的创建链表方法,仅为了方便理解和演示)


2.2 打印链表

思路:很简单,我们可以让 head 一直往后走,使用 head = head.next 向后遍历,并且当 head == null ,就让循环停下来,表示遍历完成

但是这个方法有一个缺点:即我们只能打印一次,打印完后 head 就变成 null 了,无法再找到该链表。解决方法也很简单,我们设置一个“代理人” cur,打印的时候只让它去往后遍历,head 就还是呆在头节点那里

    //打印链表public void display() {//代理人cur,防止head跑完后找不到头节点ListNode cur = head;while (cur != null) {System.out.print(cur.val+" ");cur = cur.next;}System.out.println();}

代码运行结果如下:

image-20240630161606107


2.3 求链表长度

思路:cur + 计数器。跟打印链表基本一样,多加了一个计数器,最后返回计数器的值

    //求链表长度public int size() {int count = 0;ListNode cur = head;while (cur != null) {count++;cur = cur.next;}return count;}

3. 单向链表常见方法的模拟实现

3.1 头插法

头插法是在链表中插入新节点的方法,新节点总是被插入到链表的头部,即成为链表的第一个节点

实现思路:我们要先实例化一个新的节点 node,拿着这个节点去头插,插入到当前链表头节点的前面,成为新的头节点;具体操作就是先让新节点和后面的节点建立关系 node.next = head,接着 head 要指向当前头插的新节点 head = node(这两步的顺序一定不能颠倒)

    //头插节点,也适用于空链表public void addFirst(int val) {//先绑后面的节点,再让 head 赋值ListNode node = new ListNode(val);node.next = head;this.head = node;}
  • 该头插法也适用于空链表,因为此时的 headnull,node 的地址域指向 null 也是正确的
  • 时间复杂度为 O(1),在插入节点时不需要遍历整个链表

3.2 尾插法

有头插法,那也应该有尾插法。它是在链表尾部插入新节点的方法,新节点被添加到链表的最后一个节点之后,成为新的最后一个节点

实现思路:还是要先实例化一个新的节点 node,拿着这个节点去尾插;具体操作要先找到链表的尾巴,然后将最后一个节点的 next 赋值为当前要插入节点的地址。而且,尾插需要考虑 head 为空的情况,这个需要单独判断

    //后插节点public void addLast(int val) {ListNode node = new ListNode(val);//如果链表为空if (head == null) {head = node; return;}//不为空,就正常尾插ListNode cur = head;while (cur.next != null) {cur = cur.next;}//找到尾节点了,next 赋值cur.next = node;}
  • 尾插法需要遍历整个链表以找到最后一个节点,因此时间复杂度为 O(n),其中 n 是链表的长度
  • 为了优化尾插法的性能,我们可以在链表结构中维护一个指向最后一个节点的尾指针,这样在插入新节点时可以直接访问到链表的尾部,而不需要遍历整个链表。但是在每次插入或者删除时都需要更新尾指针

3.3 指定位置插入

我们可以在指定位置 index 插入新节点,假设第一个节点的下标为 0,一共有三种情况我们要考虑到

  1. index 不合法,即小于 0 或者大于 链表长度,出现这种情况就报错,抛出异常
  2. index 为 0,我们就可以使用头插法;index 为链表长度,我们就可以使用尾插法
  3. index 合法且不为 0 也不为链表长度,那我们就正常插入:首先要找到 index 前一个位置的节点,找到后让新节点的 next 指向后一个节点 node.next = cur.next,然后再把前一个节点的 next 指向要插入的新节点的地址 cur.next = node(这两步的顺序一定不能颠倒)

image-20240630204935649

    //在 index 位置插入public void addIndex(int index, int val) {//1.判断index的合法性try {checkIndex(index);} catch (IndexNotLegalException e) {e.printStackTrace();}//2.考虑 index == 0 || index == lengthif (index == 0) {addFirst(val);return;}if (index == size()){addLast(val);return;}//3.一切正常就在 index 位置插入ListNode node = new ListNode(val);ListNode cur = head;//找到 index - 1 位置的节点int count = index - 1;while (count != 0) {cur = cur.next;count--;}//让新节点的 next 指向下一个节点,且绑定新节点node.next = cur.next;cur.next = node;}
//判断异常
public class IndexNotLegalException extends RuntimeException{public IndexNotLegalException() {}public IndexNotLegalException(String message) {super(message);}
}
  • 要创建异常类来判断 index 的不合法情况
  • 先让新节点绑定后面的节点,再让前一个节点的 next 指向新节点的地址**(顺序不能乱)**

3.4 查找值 key 的节点是否在链表中

也是非常简单,使用 cur 直接遍历,再判断 key 等不等于每一个节点的 val 值,如果 val 的类型是引用类型,就得使用 equals 来判断。因为此处演示的 val 的类型为 int,所以就直接 == 判断了

    //查找是否存在 keypublic boolean contains(int key) {ListNode cur = head;while (cur != null) {if (cur.val == key) {return true;}cur = cur.next;}return false;}

3.5 删除值为 key 的节点

思路:先判断有没有等于 key 的节点,如果没有就直接 return;如果有,那就得找到数据为 key 的前一个节点,如果跳过这个节点,让前一个节点直接连接后一个节点,这时因为 key 节点没有人引用它,就会被直接回收

image-20240630211038305

    //删除值第一个值为 key 的节点public void remove(int key) {//判空if (head == null) {return;}//判断头节点,如果是,直接让 head 跳到下一个节点if (head.val == key) {head = head.next;return;}//正常删除ListNode cur = head;//不能使用 cur != null,防止空指针异常while (cur.next != null) {//找到了,开始删除if (cur.next.val == key) {cur.next = cur.next.next;return;}//继续往后找cur = cur.next;}}

3.6 删除所有值为 key 的节点

上面介绍的操作实际上删除的是第一个值为 key 的节点,此处我们想要的是删除所有值为 key 的节点,思路类似,但方法还是有些不同:我们先创建 cur 用来表示要删除的节点,prev 用来表示 cur 的前驱节点;接着就是让 cur 去找到值为 key 的节点,找到后让 prevnext 去指向 cur 的下一个节点,然后 cur 继续往后走;另外头节点需要单独考虑,删除完成后,最后再来判断头节点的值,如果也是 key,那就让 head 往后走

image-20240630213733332

image-20240630214015091

    //删除所有值为 key 的节点public void removeAllVal(int key) {//判空if (head == null) {return;}//判断是否相等并删除ListNode prev = head;ListNode cur = head.next;while (cur != null) {if (cur.val == key) {prev.next = cur.next;cur = cur.next;} else {prev = cur;cur = cur.next;}}//判断头节点的值是否为 keyif (head.val == key) {head = head.next;}}

3.7 清空链表

清空链表很简单,我们可以直接让 head = null ,这样链表中的所有节点都会被回收,因而被清空;麻烦点的话也可以遍历链表一个个置为 null

    //清空链表(简单版)public void clear1() {head = null;}//清空链表(复杂版)public void clear2() {ListNode cur = head;while(cur != null) {ListNOde curN = cur.next;cur.next = null;cur = curN;}head = null;}

4. 双向链表的模拟实现


请注意,以下的链表默认为 无头双向非循环

上面讲完了单向链表,这里我们再来讲一下双向链表,因为在集合里中的 LinkedList 类的底层就是双向链表,我们来看一下它长什么样

image-20240709225832810

与单向链表的区别在于它不仅有后继节点,还有前驱节点,可以找到前一个节点。而且为了方便从后往前遍历,我们使用 last 来标记最后一个节点

public class MyLinkedList {static class ListNode {public int val;public ListNode prev;//前驱public ListNode next;//后继public ListNode(int val) {this.val = val;}}public ListNode head;//标志头节点public ListNode last;//标志尾节点
}

因为无论单向还是双向链表,在求链表的长度,打印链表,还是查找值 key 的节点是否在链表中这三种方法都是一样的,双向链表这博主就略过了


5. 双向链表常见方法的模拟实现

5.1 头插法

实现思路:首先创建一个新节点,然后让头节点的 prev 赋值为新节点的地址,接着让新节点的 next 指向头节点,最后把 head 赋值为新节点的地址。但是我们还是要考虑空链表的情况

    //头插法public void addFirst(int val) {ListNode node = new ListNode(val);//空链表,直接让 head 和 last 等于 nodeif (head == null) {head = last = node;} else {//开始绑定,注意顺序不能随意调换node.next = head;head.prev = node;head = node;}}

5.2 尾插法

实现思路:跟头插法很类似,就是绑定的时候顺序不能乱,也是要判空

    //尾插法public void addLast(int val) {ListNode node = new ListNode(val);//空链表,直接让 head 和 last 等于 nodeif (head == null) {head = last = node;} else {//绑定last.next = node;node.prev = last;last = node;}}

5.3 指定位置插入

实现思路:因为在双向链表中,我们可以找到前一个节点,所以就让 cur 直接走到要插入的位置 index,接下来就是绑定了。一共要改变四个地方,顺序什么的不能搞乱了

image-20240710004030016

    //在 index 位置前插入 key,且第一个数据节点下标为 0public void addIndex(int index, int key) {//index 的值不合法try {checkIndex(index);} catch (Exception e) {e.printStackTrace();}//如果为0,就是头插if (index == 0) {addFirst(key);return;}//如果是链表的长度,就是尾插if (index == size()) {addLast(key);return;}//找到要插入位置的那个节点ListNode cur = findIndex(index); //简单遍历就行ListNode node = new ListNode(key);cur.prev.next = node;node.prev = cur.prev;node.next = cur;cur.prev = node;}

5.4 删除值为 key 的节点

实现思路:想要删除,我们必须先遍历一遍链表,使用 cur 从头到尾找一遍。找到后就让当前节点 cur 的前一个节点的后继连上下一个节点,下一个节点的前驱连接前一个节点 cur.prev.next = cur.nextcur.next.prev = cur.prev。但是我们还要考虑特殊情况,如要删的是头节点或尾节点,链表只有一个节点或者空链表的情况

    //删除第一个值为 key 的节点public void remove(int key) {ListNode cur = head;while (cur != null) {if (cur.val == key) {//如果是头节点if (cur == head) {head = head.next;//如果链表仅有一个节点if (head == null) {//让 last 也变为 nulllast = null;} else {//让新的头节点的前驱为 nullhead.prev = null;}} else {//前面的连上后面的cur.prev.next = cur.next;if (cur.next == null) {//如果是尾节点last = last.prev;} else {//后面的接上前面的cur.next.prev = cur.prev;}}//找到一个删除完就 returnreturn;}//一直往后走cur = cur.next;}}
  • 在删完节点后,记得及时 return
  • 关于删头节点和尾节点那部分有点绕,if - else 太多了(如果有大佬能有更简洁的思路,欢迎评论区留言)

5.5 删除所有值为 key 的节点

实现思路:很简单,我们可以直接使用上面的代码,然后把 return 去掉,这样就能遍历完链表上的所有节点,删去所有值为 key 的节点,最后遍历到结尾,就能自然结束方法

    //删除所有值为 key 的节点public void removeAll(int key) {ListNode cur = head;while (cur != null) {if (cur.val == key) {//如果是头节点if (cur == head) {head = head.next;//如果链表仅有一个节点if (head == null) {//让 last 也变为 nulllast = null;} else {//让新的头节点的前驱为 nullhead.prev = null;}} else {//前面的连上后面的cur.prev.next = cur.next;if (cur.next == null) {//如果是尾节点last = last.prev;} else {//后面的接上前面的cur.next.prev = cur.prev;}}//找到一个删除完就 return//return;}//一直往后走cur = cur.next;}}

5.6 清空链表

实现思路:跟上面一样,将一个个节点置为 null 也行,一次性 head = last = null 也行

    //清空链表(简单版)public void clear1() {head = last = null;}//清空链表(复杂版)public void clear2() {ListNode cur = head;while(cur != null) {ListNOde curN = cur.next;cur.prev = null;cur.next = null;cur = curN;}head = last = null;}

6. LinkedList 常见方法的使用

LinkedList 官方文档

LinkedList 是采用双向循环链表实现,LinkedList 是 List 接口的另一个实现。除了可以根据索引访问集合元素外,LinkedList 还实现了 Deque 接口,可以当作双端队列来使用,也就是说,既可以当作“栈”使用,又可以当作队列使用


6.1 构造方法

方法介绍
LinkedList( )无参构造器
public LinkedList(Collection<? extends E> c)一个包含指定集合元素的构造器
	LinkedList<String> list = new LinkedList<>();Collection<String> elements = ...; // 已有的集合(必须是E或者E的子类)LinkedList<String> list = new LinkedList<>(elements);
	//演示1List<Integer> list = new LinkedList<>(); //平时创建链表的方式//演示2List<Integer> list = new LinkedList<>();list.add(1);list.add(2);list.add(3);list.add(4);List<Integer> list1 = new LinkedList<>(list);System.out.println(list1.toString());

6.2 常见方法

方法介绍
boolean add(E e)尾插元素 e
void add(int index, E e)在位置为 index 上插入 e(注意,头节点位置为 0)
void addAll(Collection<? extends E> c)尾插一个集合 c 中的所有元素
E get(int index)获取下标 index 位置的元素
E set(int index, E element)将下标 index 的元素改成 element
boolean remove(Object o)删除第一个元素 o
E remove(int index)删除 index 位置的元素
boolean contains(Object o)判断 o 是否在线性表中
void clear( )清空链表
int size( )得到链表大小
  • 关于这些方法知道就好,常用的方法就这么一些,如果忘记了就查查文档,不需要死记硬背

6.3 遍历 LinkedList

  1. 直接打印,因为 LinkedList 重写了 toString

            List<Integer> list = new LinkedList<>();list.add(1);list.add(2);list.add(3);list.add(4);list.add(5);System.out.println(list.toString());
    
  2. for-each 遍历

            for (Integer x : list) {System.out.print(x + " ");}System.out.println();
    
  3. 迭代器打印

            //创建迭代器ListIterator<Integer> iterator = list.listIterator();while (iterator.hasNext()) {System.out.print(iterator.next() + " ");}System.out.println();
    
  4. 反向迭代器打印

            ListIterator<Integer> rit = list.listIterator(list.size());while (rit.hasPrevious()) {System.out.print(rit.previous() + " ");}System.out.println();
    

7. ArrayList 和 LinkedList 的区别

不同点ArrayListLinkedList
底层结构动态数组双向链表
存储空间逻辑和物理上都连续逻辑上连续,物理上不一定连续
访问性能支持随机访问:O(1)不支持随机访问:O(n)
插入/删除性能需要移动元素,效率低直接改变节点的链接,效率高
内存机制超出了初始容量需要扩容可以动态扩容
使用场景频繁随机访问元素大量插入删除元素

ArrayList 和 LinkedList 在很多方面都不相同,各有优劣,我们还是要根据实际的应用场景来选择合适的顺序表


结语

今天我们讲了链表中的单向和双向链表,关于它们的方法机制以及方法的使用需要十分熟练地掌握,最后我们还比较了一下 ArrayList 和 LinkedList 的区别,使用哪种还是要具体的使用场景~

希望大家能够喜欢本篇博客,有总结不到位的地方还请多多谅解。若有纰漏,希望大佬们能够在私信或评论区指正,博主会及时改正,共同进步!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/379693.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实验三:图像的平滑滤波

目录 一、实验目的 二、实验原理 1. 空域平滑滤波 2. 椒盐噪声的处理 三、实验内容 四、源程序和结果 (1) 主程序&#xff08;matlab&#xff09; (2) 函数GrayscaleFilter (3) 函数MeanKernel (4) 函数MedFilter 五、结果分析 1. 空域平滑滤波 2. 椒盐噪声的处理…

小阿轩yx-zookeeper+kafka群集

小阿轩yx-zookeeperkafka群集 消息队列(Message Queue) 是分布式系统中重要的组件 通用的使用场景可以简单地描述为 当不需要立即获得结果&#xff0c;但是并发量又需要进行控制的时候&#xff0c;差不多就是需要使用消息队列的时候。 消息队列 什么是消息队列 消息(Mes…

使用Docker 实现 MySQL 循环复制(二)

系列文章 使用Docker 实现 MySQL 循环复制&#xff08;一&#xff09; 目录 系列文章1. 创建三个 mysql 容器1.1 准备三个 mysql 容器的挂载卷1.2 为三个mysql实例创建配置文件1.3 修改各目录的权限以满足 mysql 容器的要求1.4 创建 docker-compose.yaml 文件1.5 创建容器 1. …

多源字段聚合重塑算法

要求如下 [[{"oone": "评估是否聘请第三方机构","otwo": null,"othree": "test",},{"oone": "评估是否聘请第三方机构","otwo": null,"othree": "test",}],[{"oon…

npm安装依赖包报错,npm ERR! code ENOTFOUND

一、报错现象&#xff1a; npm WARN registry Unexpected warning for https://registry.npmjs.org/: Miscellaneous Warning ETIMEDOUT: request to https://registry.npmjs.org/vue failed, reason: connect ETIMEDOUT 104.16.23.35:443 npm WARN registry Using stale data…

GitHub私有派生仓库(fork仓库) | 派生仓库改为私有

GitHub私有派生仓库 前言解决方案 前言 在GitHub上Fork的派生仓库默认为公有仓库&#xff0c;且无法修改为私有仓库。 若想创建私有的派生仓库&#xff0c;可通过GitHub的导入仓库功能实现&#xff0c;具体步骤请参见下文解决方案。 解决方案 打开GitHub页面&#xff0c;在个…

新书速览|深入理解Hive:从基础到高阶:视频教学版

《深入理解Hive&#xff1a;从基础到高阶&#xff1a;视频教学版》 本书内容 《深入理解Hive:从基础到高阶:视频教学版》采用“理论实战”的形式编写&#xff0c;通过大量的实例&#xff0c;结合作者多年一线开发实战经验&#xff0c;全面地介绍Hive的使用方法。《深入理解Hiv…

UE5.4新功能 - MotionDesign上手简介

MotionDesign是UE中集成的运动图形功能&#xff0c;我们在游戏中经常会见到&#xff0c;例如前方漂浮于空中的若干碎石&#xff0c;当玩家走进时碎石自动吸附合并变成一条路&#xff0c;或者一些装饰性的物件做随机运动等等&#xff0c;在引擎没有集成运动图形时&#xff0c;这…

【Hive SQL 每日一题】找出各个商品销售额的中位数

文章目录 测试数据需求说明需求实现方法1 —— 升序计算法方法2 —— 正反排序法 补充 测试数据 -- 创建 orders 表 DROP TABLE IF EXISTS orders; CREATE TABLE orders (order_id INT,product_id INT,order_date STRING,amount DOUBLE );-- 插入 orders 数据 INSERT INTO ord…

【JVM基础01】——介绍-初识JVM运行流程

目录 1- 引言&#xff1a;初识JVM1-1 JVM是什么&#xff1f;(What)1-1-1 概念1-1-2 优点 1-2 为什么学习JVM?(Why) 2- 核心&#xff1a;JVM工作的原理&#xff08;How&#xff09;⭐2-1 JVM 的组成部分及工作流程2-2 学习侧重点 3- 小结(知识点大纲)&#xff1a;3-1 JVM 组成3…

Stable Diffusion:质量高画风清新细节丰富的二次元大模型二次元插图

今天和大家分享一个基于Pony模型训练的二次元模型&#xff1a;二次元插图。关于该模型有4个不同的分支版本。 1.5版本&#xff1a;loar模型&#xff0c;推荐底模型niji-动漫二次元4.5。 xl版本&#xff1a;SDXL模型版本 mix版本&#xff1a;光影减弱&#xff0c;减少SDXL版本…

【Docker】Docker-compose 单机容器集群编排工具

目录 一.Docker-compose 概述 1.容器编排管理与传统的容器管理的区别 2.docker-compose 作用 3.docker-compose 本质 4.docker-compose 的三大概念 二.YML文件格式及编写注意事项 1.yml文件是什么 2.yml问价使用注意事项 3.yml文件的基本数据结构 三.Docker-compose …

C语言学习笔记[25]:循环语句for

for循环 for循环的基本语法 for(表达式1;表达式2;表达式3)循环语句; 表达式1为初始化部分&#xff0c;用于初始化循环变量的。 表达式2为条件判断部分&#xff0c;用于判断循环何时终止。 表达式3为调整部分&#xff0c;用于循环条件的调整。 例如用for循环实现打印1~10的数字…

DROO论文笔记

推荐文章DROO源码及论文学习 读论文《Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks》的笔记 论文地址&#xff1a;用于无线移动边缘计算网络在线计算卸载的深度强化学习 论文代码地址&#xff1a;DR…

[论文笔记] CT数据配比方法论——1、Motivation

我正在写这方面的论文,感兴趣的可以和我一起讨论!!!!!! Motivation 1、探测原有模型的配比: 配比 与 ppl, loss, bpw, benchmark等指标 之间的关系。 2、效果稳定的配比:配比 与 模型效果 之间的规律。 Experiments 1、主语言(什么语言作为主语言,几种主语言?…

格式工厂转换视频分辨率

1、下载和安装 http://www.pcfreetime.com/formatfactory/CN/index.html 2、打开视频 3、设置分辨率等参数 也可以选择保持原分辨率 4、执行导出 5、打开输出所在位置

【HarmonyOS】HarmonyOS NEXT学习日记:四、布局与容器组件

【HarmonyOS】HarmonyOS NEXT学习日记&#xff1a;四、布局与容器组件 学习了基础组件之后&#xff0c;想要利用基础组件组装成一个页面&#xff0c;自然就要开始学习布局相关的知识。我理解的ArkUI的布局分为两个部分 一、组件自身的通用属性&#xff0c;诸如weight、height、…

国内新能源汽车芯片自给,承认差距,任重道远

【科技明说 &#xff5c; 科技热点关注】 据近日工信部电子五所元器件与材料研究院高级副院长罗道军表示&#xff0c;中国拥有最大的新能源车产能&#xff0c;芯片用量也是越来越多。但是芯片的自给率目前不到10%&#xff0c;是结构性的短缺。 中国拥有最大新能源车产能&#…

计算机课设——基于Java web的超市管理系统

smbms_java_web 基于Java web的超市管理系统&#xff0c;数据库课程设计 1.引言 是一个基于Java Web连接MySQL的小项目。 超市管理系统(smbms)作为每个计算机专业的大学生都是一个很好的练手项目&#xff0c;逻辑层次分明&#xff0c;基础功能包括用户的登录和注销&#xff…

NFS存储、API资源对象StorageClass、Ceph存储-搭建ceph集群和Ceph存储-在k8s里使用ceph(2024-07-16)

一、NFS存储 注意&#xff1a;在做本章节示例时&#xff0c;需要拿单独一台机器来部署NFS&#xff0c;具体步骤略。NFS作为常用的网络文件系统&#xff0c;在多机之间共享文件的场景下用途广泛&#xff0c;毕竟NFS配置方 便&#xff0c;而且稳定可靠。NFS同样也有一些缺点&…