SCI一区级 | Matlab实现SSA-CNN-GRU-Multihead-Attention多变量时间序列预测

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.【SCI一区级】Matlab实现SSA-CNN-GRU-Multihead-Attention麻雀算法优化卷积门控循环单元融合多头注意力机制多变量时间序列预测,要求Matlab2023版以上;

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

5.麻雀算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现SSA-CNN-GRU-Multihead-Attention多变量时间序列预测。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end​
%%  数据平铺%% 模型
numChannels = or_dim;
maxPosition = 256*2;
numHeads = 4;
numKeyChannels = numHeads*32;
layers = [ sequenceInputLayer(numChannels,Name="input")positionEmbeddingLayer(numChannels,maxPosition,Name="pos-emb");additionLayer(2, Name="add")
options = trainingOptions(solver, ...'Plots','none', ...'MaxEpochs', maxEpochs, ...'MiniBatchSize', miniBatchSize, ...'Shuffle', shuffle, ...'InitialLearnRate', learningRate, ...'GradientThreshold', gradientThreshold, ...'ExecutionEnvironment', executionEnvironment);

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/380854.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手机如何播放电脑的声音?

准备工具: 有线耳机,手机,电脑,远控软件 1.有线耳机插电脑上 2.电脑安装pc版远控软件,手机安装手机端控制版远控软件 3.手机控制电脑开启声音控制 用手机控制电脑后,打开声音控制,电脑播放视频…

Qt 使用Installer Framework制作安装包

Qt 使用Installer Framework制作安装包 引言一、下载安装 Qt Installer Framework二、简单使用2.1 创建目录结构 (文件夹结构)2.2 制作程序压缩包2.3 制作程序安装包 引言 Qt Installer Framework (安装程序框架)是一个强大的工具集,用于创建自定义的在线和离线安装…

JVM--HostSpot算法细节实现

1.根节点枚举 定义: 我们以可达性分析算法中从GC Roots 集合找引用链这个操作作为介绍虚拟机高效实现的第一个例 子。固定可作为GC Roots 的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如 栈帧中的本地变量表&a…

SVN与Git功能差异对比分析

最近在调研学习Git管理和分支模型相关内容,外延到了SVN和Git差异、工作原理等相关细节,学习整理如下。 SVN(Subversion)与 Git 的最大不同,主要包括以下几个方面: 交流探讨,加入群聊【Java学习…

Docker搭建本地私有仓库

目录 1.下载运行registry 镜像 2.添加私有镜像仓库地址 3.为镜像添加标签 4.上传到私有仓库 5.查看私有仓库的所有镜像 6.测试私有仓库下载 1.下载运行registry 镜像 docker pull registry docker run -d -v /data/registry:/var/lib/registry -p 5000:5000 --restartal…

通过vue3 + TypeScript + uniapp + uni-ui 实现下拉刷新和加载更多的功能

效果图: 核心代码: <script lang="ts" setup>import { ref, reactive } from vue;import api from @/request/api.jsimport empty from @/component/empty.vueimport { onLoad,onShow, onPullDownRefresh, onReachBottom } from @dcloudio/uni-applet form …

消费金融系统开发回忆录

架构设计图 整个支付链路上的功能 支付系统应该有&#xff1a;账户管理、渠道管理、支付管理、对账管理、清算管理、结算管理 一笔支付订单&#xff0c;在支付系统侧就是要记录清楚&#xff0c;谁发起的、对哪个商品进行支付、通过哪个渠道支付、支付时间、支付结果等…

Unity XR Interaction Toolkit(VR、AR交互工具包)记录安装到开发的流程,以及遇到的常见问题(一)!

提示&#xff1a;文章有错误的地方&#xff0c;还望诸位大神不吝指教&#xff01; 文章目录 前言一、XR Interaction Toolkit是什么&#xff1f;二、跨平台交互三、 AR 功能四、XR Interaction Toolkit的特点五、XR Interaction Toolkit 示例总结 前言 随着VR行业的发展&#…

huawei USG6001v1学习---防火墙相关知识(2)

目录 1.安全策略 2.防火墙的状态检测和会话表技术 3.FTP 4.用户认证 5.认证策略 1.安全策略 传统包过滤技术 --- 其本质就是ACL访问控制列表&#xff0c;根据数据包的特征进行过滤&#xff0c;对比规则&#xff0c; 执行对应的动作&#xff1b; 这里数据包的特征 --- …

【Linux】编辑器vscode与linux的联动

1.vscode简单学习 vscode是编辑器&#xff0c;可以写各种语言的程序 下载链接&#xff1a;Download Visual Studio Code - Mac, Linux, Windows 来用一下vscode 我们保存了就能在我们的那个文件夹里面看到这个 这个就是编辑器&#xff0c;跟我们的文本文件好像差不多&#…

LLaMA 数据集

LLaMA的训练数据集来源多样&#xff0c;涵盖了多个不同的数据集和预处理步骤。以下是详细的描述&#xff1a; 公开数据来源和预处理 CommonCrawl [67%]&#xff1a; 使用CCNet管道&#xff08;Wenzek等人&#xff0c;2020年&#xff09;对2017年至2020年间的五个CommonCrawl转…

【大模型】FAISS向量数据库记录:从基础搭建到实战操作

文章目录 文章简介Embedding模型BGE-M3 模型亮点 FAISS是什么FAISS实战安装faiss加载Embedding模型创建FAISS数据库搜索FAISS数据删除FAISS数据保存、加载FAISS索引 总结 本人数据分析领域的从业者&#xff0c;拥有专业背景和能力&#xff0c;可以为您的数据采集、数据挖掘和数…

基于java的设计模式学习

PS &#xff1a;以作者的亲身来看&#xff0c;这东西对于初学者来说有用但不多&#xff0c;这些东西&#xff0c;更像一种经验的总结&#xff0c;在平时开发当中一般是用不到的&#xff0c;因此站在这个角度上用处不大。 1.工厂模式 1.1 简单工厂模式 我们把new 对象逻辑封装…

FastAPI 学习之路(五十九)封装统一的json返回处理工具

在本篇文章之前的接口&#xff0c;我们每个接口异常返回的数据格式都不一样&#xff0c;处理起来也没有那么方便&#xff0c;因此我们可以封装一个统一的json。 from fastapi import status from fastapi.responses import JSONResponse, Response from typing import Unionde…

java项目(knife4j使用,静态资源未放在static资源包下,公共字段自动填充,Spring Cache与Spring Task)

Knife4j&#xff08;生成接口文档&#xff09; 使用swagger你只需要按照它的规范去定义接口及接口相关的信息&#xff0c;就可以做到生成接口文档&#xff0c;以及在线接口调试页面。官网:https://swagger.io/ Knife4j是为Java MVC框架集成Swagger生成Api文档的增强解决方案。…

huawei USG6001v1学习----NAT和智能选路

目录 1.NAT的分类 2.智能选路 1.就近选路 2.策略路由 3.智能选路 NAT:&#xff08;Network Address Translation&#xff0c;网络地址转换&#xff09; 指网络地址转换&#xff0c;1994年提出的。NAT是用于在本地网络中使用私有地址&#xff0c;在连接互联网时转而使用全局…

[GIS实验]居住环境适宜性评价

目的&#xff1a; 拟购买住宅&#xff0c;需在现有条件下&#xff0c;基于地理空间分析方法和空间认知模型对居住环境进行综合评价。通过该实验掌握基于GIS的地理空间认知方法及土地适宜性评价基本原理与方法。 数据&#xff1a; &#xff08;1&#xff09;人口调查图&#…

arcgis怎么选取某个指定区域地方的数据,比如从全国乡镇数据选取长沙市乡镇数据

一共5个步骤&#xff0c;没一句废话&#xff0c;耐心看完。 1、如图&#xff0c;先将数据加载到arcgis里面&#xff0c;我们要选取里面长沙市的范围数据。 2、选取长沙市的语句 “市” like ‘长沙%’ 切记&#xff0c;切记&#xff0c;切记。所有符号要在 输入法英文状态…

FPGA:二选一选择器

1、需求 使用XILINX的XC7A35TFFG484-2开发板&#xff0c;完成二选一选择器的设计。 2、分析 二选一选择器如下所示&#xff1a; 观察可知有三个输入端&#xff0c;一个输出端&#xff0c;其逻辑原理为&#xff1a;当sel为高电平时&#xff0c;outa&#xff0c;当sel为低电平…

深入理解Linux网络(三):TCP对象创建

深入理解Linux网络&#xff08;三&#xff09;&#xff1a;TCP对象创建 TCP对象创建inet_createsock_init_data TCP对象创建 常见的三句TCP编程&#xff1a; int main() {int sk socket(AF_INET, SOCK_STREAM, 0);connect(sk, ...)recv(sk, ...) }简单的两三⾏代码&#xff…