新手小白的pytorch学习第十弹----多类别分类问题模型以及九、十弹的练习

目录

  • 1 多类别分类模型
    • 1.1 创建数据
    • 1.2 创建模型
    • 1.3 模型传出的数据
    • 1.4 损失函数和优化器
    • 1.5 训练和测试
    • 1.6 衡量模型性能的指标
  • 2 练习Exercise

之前我们已经学习了 二分类问题,二分类就像抛硬币正面和反面,只有两种情况。
这里我们要探讨一个 多类别分类模型,比如输入一张图片,分类它是pizza、牛排或者寿司,这里的类别是三,就是多类别分类问题。

1 多类别分类模型

1.1 创建数据

# 创建数据
from sklearn.datasets import make_blobs
import torch
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.optim as optimRANDOM_SEED = 42
NUM_CLASSES = 4
NUM_FEATURES = 2# 创建多类别数据
X, y = make_blobs(n_samples = 1000,n_features = NUM_FEATURES, # X featurescenters = NUM_CLASSES, # y labelscluster_std = 1.5, # 让数据抖动random_state = RANDOM_SEED)# 将数据转换为 tensor
X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.LongTensor)print(X.dtype, y.dtype)

torch.float32 torch.int64

# 将数据集划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=RANDOM_SEED)
len(X_train), len(y_train), len(X_test), len(y_test)
print(X_train[:5], y_train[:5])

tensor([[ 5.0405, 3.3076],
[-2.6249, 9.5260],
[-8.5240, -9.0402],
[-6.0262, -4.4375],
[-3.3397, 7.2175]]) tensor([1, 0, 2, 2, 0])

# 可视化数据
plt.figure(figsize=(10, 7))
plt.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.RdYlBu)

在这里插入图片描述

# 创建设备无关的代码
device = "cuda" if torch.cuda.is_available() else "cpu"
device

‘cuda’

1.2 创建模型

# 创建模型
# 这次创建模型特殊的点在于我们在 __init__()括号的参数选择中,多添加了参数
# input_features:输入  output_features:输出 hidden_units:隐藏层中神经元的个数
class BlobModel(nn.Module):def __init__(self, input_features, output_features, hidden_units=8):super().__init__()self.linear_stack = nn.Sequential(nn.Linear(in_features=input_features, out_features=hidden_units),nn.ReLU(),nn.Linear(in_features=hidden_units, out_features=hidden_units),nn.ReLU(),nn.Linear(in_features=hidden_units, out_features=output_features))def forward(self, x):return self.linear_stack(x)model_0 = BlobModel(input_features=NUM_FEATURES, output_features=NUM_CLASSES, hidden_units=8).to(device)
model_0

BlobModel(
(linear_stack): Sequential(
(0): Linear(in_features=2, out_features=8, bias=True)
(1): ReLU()
(2): Linear(in_features=8, out_features=8, bias=True)
(3): ReLU()
(4): Linear(in_features=8, out_features=4, bias=True)
)
)

# 将数据和模型统一到目标设备上
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)

1.3 模型传出的数据

# 先看一下模型会传出什么数据吧
model_0.eval()
with torch.inference_mode():y_logits = model_0(X_train)print(y_logits[:5])
print(y_train[:5])

tensor([[-0.7333, -0.0491, -0.1253, 0.2468],
[-0.6059, 0.0958, 0.1232, 0.0641],
[ 1.1539, 0.1951, -0.1268, -1.1032],
[ 0.6424, 0.1891, -0.1171, -0.7310],
[-0.4519, 0.1914, 0.0589, 0.0031]], device=‘cuda:0’)
tensor([1, 0, 2, 2, 0], device=‘cuda:0’)

很明显这里模型的输出和我们真实的输出是不一样的,是无法进行比较的,所以我们需要将logits -> prediction probabilities -> prediction labels

logits 就是我们模型原始的输出, prediction probabilities 是预测概率,表示我将这个数据预测为这个类别的概率,概率值最大的,那模型就可以认为数据被分为这个类最可靠最可信 prediction labels 预测标签,比如这里我们有四类数据,就是 [0, 1, 2, 3]

还记得我们之前是如何将 logits -> prediction probabilities 的吗?之前的二分类,我们使用的是sigmoid(),这里多类比分类,我们使用softmax方法

y_pred_probs = torch.softmax(y_logits, dim=1)
y_pred_probs

tensor([[0.1336, 0.2649, 0.2454, 0.3561],
[0.1420, 0.2863, 0.2943, 0.2774],
[0.5663, 0.2171, 0.1573, 0.0593],
…,
[0.1361, 0.2749, 0.3078, 0.2811],
[0.4910, 0.2455, 0.1806, 0.0829],
[0.1920, 0.3041, 0.2983, 0.2056]], device=‘cuda:0’)

# 上次二分类我们使用的 torch.round() 进行四舍五入, 那这里我们的多类别分类该如何进行呢?
# 由于这里四个类别,我们选取概率最大的值,找到概率最大值的下标位置,我们就知道它是哪个类别了
# 想起来,我们学过的tensor基础课了么
# 没错,就是 argmax() 返回最大值的位置
y_preds = torch.argmax(y_pred_probs[0])
print(y_preds)

tensor(3, device=‘cuda:0’)

这里的数据都是随机的,是没有训练的,所以效果是不太好的。

1.4 损失函数和优化器

# 创建损失函数
loss_fn = nn.CrossEntropyLoss()# 创建优化器
optimizer = optim.SGD(params=model_0.parameters(),lr=0.1)
# 定义一个计算Accuracy的函数
def accuracy_fn(y_true, y_pred):correct = torch.eq(y_true, y_pred).sum().item()return (correct / len(y_pred))*100

1.5 训练和测试

# 训练数据
# 设置训练周期
epochs = 100for epoch in range(epochs):# 模型训练model_0.train()y_logits = model_0(X_train)y_preds = torch.softmax(y_logits, dim=1).argmax(dim=1)loss = loss_fn(y_logits, y_train)acc = accuracy_fn(y_true=y_train,y_pred = y_preds)optimizer.zero_grad()loss.backward()optimizer.step()# 模型测试model_0.eval()with torch.inference_mode():test_logits = model_0(X_test)test_preds = torch.softmax(test_logits, dim=1).argmax(dim=1)test_loss = loss_fn(test_logits,y_test)test_acc = accuracy_fn(y_true=y_test,y_pred=test_preds)# 打印输出if epoch % 10 == 0:print(f"Epoch:{epoch} | Train Loss:{loss:.4f} | Train Accuracy:{acc:.2f}% | Test Loss:{test_loss:.4f} | Test Accuracy:{test_acc:.2f}%")

Epoch:0 | Train Loss:1.5929 | Train Accuracy:1.88% | Test Loss:1.2136 | Test Accuracy:31.50%
Epoch:10 | Train Loss:0.9257 | Train Accuracy:53.37% | Test Loss:0.8747 | Test Accuracy:72.00%
Epoch:20 | Train Loss:0.6246 | Train Accuracy:91.25% | Test Loss:0.5729 | Test Accuracy:97.00%
Epoch:30 | Train Loss:0.2904 | Train Accuracy:97.62% | Test Loss:0.2503 | Test Accuracy:99.00%
Epoch:40 | Train Loss:0.1271 | Train Accuracy:99.12% | Test Loss:0.1101 | Test Accuracy:99.00%
Epoch:50 | Train Loss:0.0771 | Train Accuracy:99.25% | Test Loss:0.0668 | Test Accuracy:99.00%
Epoch:60 | Train Loss:0.0576 | Train Accuracy:99.12% | Test Loss:0.0488 | Test Accuracy:99.00%
Epoch:70 | Train Loss:0.0479 | Train Accuracy:99.12% | Test Loss:0.0396 | Test Accuracy:99.50%
Epoch:80 | Train Loss:0.0422 | Train Accuracy:99.12% | Test Loss:0.0339 | Test Accuracy:99.50%
Epoch:90 | Train Loss:0.0385 | Train Accuracy:99.12% | Test Loss:0.0302 | Test Accuracy:99.50%

# 可视化
from helper_functions import plot_decision_boundary
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title("Train")
plot_decision_boundary(model=model_0, X=X_train, y=y_train)
plt.subplot(1, 2, 2)
plt.title("Test")
plot_decision_boundary(model=model_0, X=X_test, y=y_test)

在这里插入图片描述
哇塞,这个分类很赞吧,但是看这个划分,我们可以观察出可能不使用非线性函数也可以,咱们把模型里面的ReLU()去掉就可以啦,大家自己去试试吧,这里就不赘述啦~

1.6 衡量模型性能的指标

衡量一个模型的性能,不只是有accuracy,还有其他的,比如说:

  • F1 score
  • Precison
  • Recall
  • Confusion matrix
  • Accuracy
from torchmetrics import Accuracytorchmetrics_accuracy = Accuracy(task='multiclass', num_classes=4).to(device)# 计算准确度
torchmetrics_accuracy(test_preds, y_test)

tensor(0.9950, device=‘cuda:0’)

OK,我们还可以调用函数计算准确度呢!结束了这里的学习,开始我们的练习来检测我们的学习吧~

2 练习Exercise

1. Make a binary classification dataset with Scikit-Learn’s make_moons() function.
* For consistency, the dataset should have 1000 samples and a random_state=42.
* Turn the data into PyTorch tensors. Split the data into training and test sets using train_test_split with 80% training and 20% testing.

from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optimRANDOM_SEED = 42X, y = make_moons(n_samples=1000,noise=0.03,random_state=RANDOM_SEED)X[:5], y[:5]

(array([[-0.00933187, 0.39098105],
[ 0.95457387, -0.47375583],
[ 0.9185256 , -0.42519648],
[ 0.41276802, -0.37638459],
[-0.84532016, 0.52879908]]),
array([1, 1, 1, 1, 0], dtype=int64))

# 可视化数据
plt.figure(figsize=(10, 7))
plt.scatter(X[:,0], X[:,1], c=y, cmap=plt.cm.RdYlBu)

在这里插入图片描述
查看数据,我们发现,特征输入是2,输出是1,哇,看图像,是个二分类喔,这个模型肯定是要用到非线性的.

# 将数据转换为 Tensor
X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.float)
print(X.dtype, y.dtype)
print(X[:5], y[:5])

torch.float32 torch.float32
tensor([[-0.0093, 0.3910],
[ 0.9546, -0.4738],
[ 0.9185, -0.4252],
[ 0.4128, -0.3764],
[-0.8453, 0.5288]]) tensor([1., 1., 1., 1., 0.])

# 将数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2,random_state=RANDOM_SEED)
len(X_train), len(X_test), len(y_train), len(y_test)

(800, 200, 800, 200)

2. Build a model by subclassing nn.Module that incorporates non-linear activation functions and is capable of fitting the data you created in 1.
* Feel free to use any combination of PyTorch layers (linear and non-linear) you want.

# 设备无关
device = "cuda" if torch.cuda.is_available() else "cpu"
device

‘cuda’

class MoonModel(nn.Module):def __init__(self, input_features, output_features, hidden_units):super().__init__()self.linear_stack = nn.Sequential(nn.Linear(in_features=input_features, out_features=hidden_units),# nn.ReLU(),nn.Tanh(),nn.Linear(in_features=hidden_units, out_features=hidden_units),# nn.ReLU(),nn.Tanh(),nn.Linear(in_features=hidden_units, out_features=output_features))def forward(self, x):return self.linear_stack(x)model_0 = MoonModel(input_features=2,output_features=1, hidden_units=10).to(device)
model_0

MoonModel(
(linear_stack): Sequential(
(0): Linear(in_features=2, out_features=10, bias=True)
(1): Tanh()
(2): Linear(in_features=10, out_features=10, bias=True)
(3): Tanh()
(4): Linear(in_features=10, out_features=1, bias=True)
)
)

3. Setup a binary classification compatible loss function and optimizer to use when training the model.

# 损失函数和优化器
loss_fn = nn.BCEWithLogitsLoss()
optimizer = optim.SGD(params=model_0.parameters(),lr=0.1)

4. Create a training and testing loop to fit the model you created in 2 to the data you created in 1.
* To measure model accuray, you can create your own accuracy function or use the accuracy function in TorchMetrics.
* Train the model for long enough for it to reach over 96% accuracy.
* The training loop should output progress every 10 epochs of the model’s training and test set loss and accuracy.

# 将数据都放到统一的设备上
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)
# 计算正确率的函数
def accuracy_fn(y_true, y_pred):correct = torch.eq(y_true, y_pred).sum().item()return (correct / len(y_pred))*100
print(y_logits.shape, y_train.shape)
print(len(y_train))

torch.Size([240, 3]) torch.Size([800])
800

# 训练和测试# 设置训练周期
epochs = 1000for epoch in range(epochs):# 训练model_0.train()y_logits = model_0(X_train).squeeze()y_preds = torch.round(torch.sigmoid(y_logits))loss = loss_fn(y_logits, y_train)acc = accuracy_fn(y_true=y_train,y_pred=y_preds)optimizer.zero_grad()loss.backward()optimizer.step()# 测试model_0.eval()with torch.inference_mode():test_logits = model_0(X_test).squeeze()test_preds = torch.round(torch.sigmoid(test_logits))test_loss = loss_fn(test_logits,y_test)test_acc = accuracy_fn(y_true=y_test,y_pred=test_preds)# 打印输出if epoch % 10 == 0:print(f"Epoch:{epoch} | Train Loss:{loss:.4f} | Train Accuracy:{acc:.2f}% | Test Loss:{test_loss:.4f} | Test Accuracy:{test_acc:.2f}%")

Epoch:0 | Train Loss:0.7151 | Train Accuracy:30.63% | Test Loss:0.7045 | Test Accuracy:34.50%
Epoch:10 | Train Loss:0.6395 | Train Accuracy:80.50% | Test Loss:0.6378 | Test Accuracy:76.00%
Epoch:20 | Train Loss:0.5707 | Train Accuracy:79.88% | Test Loss:0.5754 | Test Accuracy:75.00%

Epoch:990 | Train Loss:0.0172 | Train Accuracy:100.00% | Test Loss:0.0150 | Test Accuracy:100.00%
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings…

5. Make predictions with your trained model and plot them using the plot_decision_boundary() function created in this notebook.

# 可视化
from helper_functions import plot_decision_boundary
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title("Training")
plot_decision_boundary(model=model_0, X=X_train, y=y_train)
plt.subplot(1, 2, 2)
plt.title("Testing")
plot_decision_boundary(model=model_0, X=X_test, y=y_test)

在这里插入图片描述

6. Replicate the Tanh (hyperbolic tangent) activation function in pure PyTorch.
* Feel free to reference the ML cheatsheet website for the formula.
这个只需要将模型里面的ReLU()激活函数换为Tanh()即可

7. Create a multi-class dataset using the spirals data creation function from CS231n (see below for the code).
* Construct a model capable of fitting the data (you may need a combination of linear and non-linear layers).
* Build a loss function and optimizer capable of handling multi-class data (optional extension: use the Adam optimizer instead of SGD, you may have to experiment with different values of the learning rate to get it working).
* Make a training and testing loop for the multi-class data and train a model on it to reach over 95% testing accuracy (you can use any accuracy measuring function here that you like).
* Plot the decision boundaries on the spirals dataset from your model predictions, the plot_decision_boundary() function should work for this dataset too.

# Code for creating a spiral dataset from CS231n
import numpy as np
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in range(K):ix = range(N*j,N*(j+1))r = np.linspace(0.0,1,N) # radiust = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # thetaX[ix] = np.c_[r*np.sin(t), r*np.cos(t)]y[ix] = j
# lets visualize the data
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.show()
# 创建 spiral 数据集
RANDOM_SEED = 42import numpy as np
N = 100 # 每一类点的数量
D = 2 # 维度
K = 3 # 类别的数量
X = np.zeros((N*K, D))
y = np.zeros(N*K, dtype='uint8') # 类别标签
for j in range(K):ix = range(N*j, N*(j+1))r = np.linspace(0.0, 1, N) # 半径t = np.linspace(j*4, (j+1)*4, N) + np.random.randn(N) * 0.2 # thetaX[ix] = np.c_[r*np.sin(t), r*np.cos(t)]y[ix] = j# 数据可视化
plt.scatter(X[:,0], X[:,1],c=y, s=40, cmap=plt.cm.Spectral)
plt.show()

在这里插入图片描述

print(X[:5],y[:5])
print(X.shape, y.shape)

[[0. 0. ]
[0.00183158 0.00993357]
[0.00362348 0.01987441]
[0.00290204 0.03016375]
[0.00458536 0.04014301]] [0 0 0 0 0]
(300, 2) (300,)

可以看出我们的数据,输入是2,输出是3,3个类别嘛

# 将数据转化为tensor
X = torch.from_numpy(X).type(torch.float)
y = torch.from_numpy(y).type(torch.LongTensor)
X.dtype, y.dtype

(torch.float32, torch.int64)

# 将数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=RANDOM_SEED)
len(X_train), len(X_test), len(y_train), len(y_test)

(240, 60, 240, 60)

len(X), len(y)

(300, 300)

# 设备无关
device = "cuda" if torch.cuda.is_available() else "cpu"
device

‘cuda’

# 将数据放到统一的设备上
X_train, y_train = X_train.to(device), y_train.to(device)
X_test, y_test = X_test.to(device), y_test.to(device)
# 创建模型
class SpiralModel(nn.Module):def __init__(self, input_features, output_features, hidden_layers):super().__init__()self.linear_stack = nn.Sequential(nn.Linear(in_features=input_features, out_features=hidden_layers),nn.Tanh(),nn.Linear(in_features=hidden_layers, out_features=hidden_layers),nn.Tanh(),nn.Linear(in_features=hidden_layers, out_features=output_features))def forward(self, x):return self.linear_stack(x)model_1 = SpiralModel(2, 3, 10).to(device)
model_1

SpiralModel(
(linear_stack): Sequential(
(0): Linear(in_features=2, out_features=10, bias=True)
(1): Tanh()
(2): Linear(in_features=10, out_features=10, bias=True)
(3): Tanh()
(4): Linear(in_features=10, out_features=3, bias=True)
)
)

# 损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(params=model_1.parameters(),lr=0.1)
print(y_logits.shape)
print(y_train.shape)
print(y_preds)

torch.Size([800])
torch.Size([240])
tensor([1., 0., 0., 0., 1., 0., 1., 1., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0.,
0., 1., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
1., 1., 1., 1., 1., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1.,

1., 1., 0., 0., 0., 0., 1., 1., 1., 0., 1., 0., 1., 0., 1., 1., 1., 0.,
0., 1., 0., 0., 1., 1., 1., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 1.,
1., 1., 0., 1., 0., 0., 0., 1.], device=‘cuda:0’,
grad_fn=)
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings…

torch.manual_seed(RANDOM_SEED)
torch.cuda.manual_seed(RANDOM_SEED)# 训练和测试
epochs = 100for epoch in range(epochs):# 训练model_1.train()y_logits = model_1(X_train)y_preds = torch.softmax(y_logits, dim=1).argmax(dim=1)loss = loss_fn(y_logits, y_train)acc = accuracy_fn(y_true=y_train,y_pred=y_preds)optimizer.zero_grad()loss.backward()optimizer.step()# 测试model_1.eval()with torch.inference_mode():test_logits = model_1(X_test)test_preds = torch.softmax(test_logits, dim=1).argmax(dim=1)test_loss = loss_fn(test_logits, y_test)test_acc = accuracy_fn(y_true=y_test,y_pred=test_preds)# 打印输出if epoch % 10 == 0:print(f"Epoch:{epoch} | Train Loss:{loss:.4f} | Train Accuracy:{acc:.2f}% | Test Loss:{test_loss:.4f} | Test Accuracy:{test_acc:.2f}%")

Epoch:0 | Train Loss:1.1065 | Train Accuracy:35.00% | Test Loss:0.9883 | Test Accuracy:40.00%
Epoch:10 | Train Loss:0.7705 | Train Accuracy:54.58% | Test Loss:0.7651 | Test Accuracy:55.00%
Epoch:20 | Train Loss:0.5308 | Train Accuracy:76.25% | Test Loss:0.4966 | Test Accuracy:75.00%
Epoch:30 | Train Loss:0.2872 | Train Accuracy:93.33% | Test Loss:0.2097 | Test Accuracy:95.00%
Epoch:40 | Train Loss:0.1477 | Train Accuracy:95.00% | Test Loss:0.0998 | Test Accuracy:98.33%
Epoch:50 | Train Loss:0.0820 | Train Accuracy:97.50% | Test Loss:0.0472 | Test Accuracy:100.00%
Epoch:60 | Train Loss:0.0488 | Train Accuracy:99.17% | Test Loss:0.0247 | Test Accuracy:100.00%
Epoch:70 | Train Loss:0.0418 | Train Accuracy:97.92% | Test Loss:0.0127 | Test Accuracy:100.00%
Epoch:80 | Train Loss:0.0307 | Train Accuracy:99.17% | Test Loss:0.0168 | Test Accuracy:100.00%
Epoch:90 | Train Loss:0.0282 | Train Accuracy:99.17% | Test Loss:0.0060 | Test Accuracy:100.00%

# 可视化看一下
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title("Training")
plot_decision_boundary(model=model_1, X=X_train, y=y_train)
plt.subplot(1, 2, 2)
plt.title("Testing")
plot_decision_boundary(model=model_1, X=X_test, y=y_test)

在这里插入图片描述
哇,看这个图像拟合的多么好,太厉害了!
This work is so good!

BB,今天的学习就到这里啦!

话说户部巷烤面筋尊嘟嘎嘎好吃

BB,如果文档对您有用的话,记得给我点个赞赞撒!

靴靴BB谢谢BB~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/381939.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于关键字驱动设计Web UI自动化测试框架!

引言 在自动化测试领域,关键字驱动测试(Keyword-Driven Testing, KDT)是一种高效且灵活的方法,它通过抽象测试用例中的操作为关键字,实现了测试用例与测试代码的分离,从而提高了测试脚本的可维护性和可扩展…

记录解决springboot项目上传图片到本地,在html里不能回显的问题

项目场景: 项目场景:在我的博客系统里:有个相册模块:需要把图片上传到项目里,在html页面上显示 解决方案 1.建一个文件夹 例如在windows系统下。可以在项目根目录下建个photos文件夹,把上传的图片文件…

[PM]产品运营

生命周期 运营阶段 主要工作 拉新 新用户的定义 冷启动 拉新方式 促活 用户活跃的原因 量化活跃度 运营社区化/内容化 留存 用户流失 培养用户习惯 用户挽回 变现 变现方式 付费模式 广告模式 数据变现 变现指标 传播 营销 认识营销 电商营销中心 拼团活动 1.需求整理 2.…

JMeter请求导出Excel

前言 今天记录一个使用JMeter模拟浏览器请求后端导出,并下载Excel到指定位置的过程 创建请求 同样先创建一个线程组,再创建一个请求,设置好请求路径,端口号等 查看结果树 右键--添加--监听器--查看结果树 这里可以查看&#…

VUE之---slot插槽

什么是插槽 slot 【插槽】, 是 Vue 的内容分发机制, 组件内部的模板引擎使用slot 元素作为承载分发内容的出口。slot 是子组件的一个模板标签元素, 而这一个标签元素是否显示, 以及怎么显示是由父组件决定的。 VUE中slot【插槽】…

详细讲解vue3 watch回调的触发时机

目录 Vue 3 watch 基本用法 副作用刷新时机 flush 选项 flush: pre flush: post flush: sync Vue 3 watch 基本用法 计算属性允许我们声明性地计算衍生值。然而在有些情况下,我们需要在状态变化时执行一些“副作用”:例如更改 DOM,或是…

display: flex 和 justify-content: center 强大居中

你还在为居中而烦恼吗,水平居中多个元素、创建响应式布局、垂直和水平同时居中内容。它,display: flex 和 justify-content: center 都可以完成! display: flex:将元素定义为flex容器 justify-content:定义项目在主轴…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA的生日派对座位安排(200分) - 三语言AC题解(Python/Java/Cpp)

🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试D卷目录,全、新、准,题目覆盖率达 95% 以上,支持题目在线…

FairGuard游戏加固入选《嘶吼2024网络安全产业图谱》

2024年7月16日,国内网络安全专业媒体——嘶吼安全产业研究院正式发布《嘶吼2024网络安全产业图谱》(以下简称“产业图谱”)。 本次发布的产业图谱,共涉及七大类别,127个细分领域。全面展现了网络安全产业的构成和重要组成部分,探…

Ant Design Vue中日期选择器快捷选择 presets 用法

ant写文档的纯懒狗 返回的是一个day.js对象 范围选择时可接受一个数组 具体参考 操作 Day.js 话不多说 直接上代码 <a-range-pickerv-model:value"formData.datePick"valueFormat"YYYY-MM-DD HH:mm:ss"showTime:presets"presets"change&quo…

【机器学习】模型验证曲线(Validation Curves)解析

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 模型验证曲线(Validation Curves)解析什么是模型验证曲线?模型验证曲线的解读模…

揭秘!电源炼成记:从基础原理到高端设计的全面解析

文章目录 初始构想&#xff1a;需求驱动设计原理探索&#xff1a;选择适合的拓扑结构精细设计&#xff1a;元器件选型与布局环路稳定&#xff1a;控制策略与补偿网络严格测试&#xff1a;验证与优化持续改进&#xff1a;创新与技术迭代《硬件十万个为什么&#xff08;电源是怎样…

《Linux运维总结:基于ARM64架构CPU使用docker-compose一键离线部署单机版tendis2.4.2》

总结&#xff1a;整理不易&#xff0c;如果对你有帮助&#xff0c;可否点赞关注一下&#xff1f; 更多详细内容请参考&#xff1a;《Linux运维篇&#xff1a;Linux系统运维指南》 一、部署背景 由于业务系统的特殊性&#xff0c;我们需要面对不同的客户部署业务系统&#xff0…

单周期CPU(三)译码模块(minisys)(verilog)(vivado)

timescale 1ns / 1ps //module Idecode32 (input reset,input clock,output [31:0] read_data_1, // 输出的第一操作数output [31:0] read_data_2, // 输出的第二操作数input [31:0] Instruction, // 取指单元来的指令input [31:0] …

邮件安全篇:企业电子邮件安全涉及哪些方面?

1. 邮件安全概述 企业邮件安全涉及多个方面&#xff0c;旨在保护电子邮件通信的机密性、完整性和可用性&#xff0c;防止数据泄露、欺诈、滥用及其他安全威胁。本文从身份验证与防伪、数据加密、反垃圾邮件和反恶意软件防护、邮件内容过滤与审计、访问控制与权限管理、邮件存储…

MATLAB基础:字符串、元胞数组

今天我们继续学习MATLAB中的字符串、元胞和结构 字符串 由于MATLAB是面向矩阵的&#xff0c;所以字符串的处理可以用矩阵的形式实现 字符串的赋值与引用 假设变量a&#xff0c;将用单引号引起来的字符串赋值给它&#xff0c; a清心明目, b(a[4;-1;1]) 在这里&#xff0c;…

web每日一练

每日一题 每天一题罢了。。 ctfshow内部赛签到 扫到备份文件 login.php <?php function check($arr){ if(preg_match("/load|and|or|\||\&|select|union|\|| |\\\|,|sleep|ascii/i",$arr)){echo "<script>alert(bad hacker!)</script>&q…

Lua 语法学习笔记

Lua 语法学习笔记 安装(windows) 官网&#xff1a;https://www.lua.org/ 下载SDK 解压&修改名称&#xff08;去除版本号&#xff09; 将lua后面的版本号去掉&#xff0c;如lua54.exe->lua.ext 配置环境变量 数据类型 数据类型描述nil这个最简单&#xff0c;只有值n…

【safari】react在safari浏览器中,遇到异步时间差的问题,导致状态没有及时更新到state,引起传参错误。如何解决

在safari浏览器中&#xff0c;可能会遇到异步时间差的问题&#xff0c;导致状态没有及时更新到state&#xff0c;引起传参错误。 PS&#xff1a;由于useState是一个普通的函数&#xff0c; 定义为() > void;因此此处不能用await/async替代setTimeout&#xff0c;只能用在返…

自动驾驶---视觉Transformer的应用

1 背景 在过去的几年&#xff0c;随着自动驾驶技术的不断发展&#xff0c;神经网络逐渐进入人们的视野。Transformer的应用也越来越广泛&#xff0c;逐步走向自动驾驶技术的前沿。笔者也在博客《人工智能---什么是Transformer?》中大概介绍了Transformer的一些内容&#xff1a…