YOLOv5全面解析教程①:网络结构逐行代码解读

e22910166c884ab92afe47ab1cb3656a.jpeg

撰文 | Fengwen, BBuf

本教程涉及的代码在:

https://github.com/Oneflow-Inc/one-yolov5

教程也同样适用于 Ultralytics/YOLOv5,因为 One-YOLOv5 仅仅是换了一个运行时后端而已,计算逻辑和代码相比 Ultralytics/YOLOv5 没有做任何改变,欢迎 star 。详细信息请看:一个更快的YOLOv5问世,附送全面中文解析教程

 1

引言

YOLOv5针对不同大小(n, s, m, l, x)的网络整体架构都是一样的,只不过会在每个子模块中采用不同的深度和宽度,分别应对yaml文件中的depth_multiple和width_multiple参数。

还需要注意一点,官方除了n, s, m, l, x版本外还有n6, s6, m6, l6, x6,区别在于后者是针对更大分辨率的图片比如1280x1280, 当然结构上也有些差异,前者只会下采样到32倍且采用3个预测特征层 , 而后者会下采样64倍,采用4个预测特征层。

本章将以YOLOv5s为例,

从配置文件models/yolov5s.yaml

(https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolov5s.yaml)到models/yolo.py (https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolo.py)

源码进行解读。

 2

yolov5s.yaml文件内容

nc: 80  # number of classes 数据集中的类别数
depth_multiple: 0.33  # model depth multiple  模型层数因子(用来调整网络的深度)
width_multiple: 0.50  # layer channel multiple 模型通道数因子(用来调整网络的宽度)
# 如何理解这个depth_multiple和width_multiple呢?它决定的是整个模型中的深度(层数)和宽度(通道数),具体怎么调整的结合后面的backbone代码解释。anchors: # 表示作用于当前特征图的Anchor大小为 xxx
# 9个anchor,其中P表示特征图的层级,P3/8该层特征图缩放为1/8,是第3层特征- [10,13, 16,30, 33,23]  # P3/8, 表示[10,13],[16,30], [33,23]3个anchor- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5s v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5s v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

3

anchors 解读

YOLOv5 初始化了 9 个 anchors,分别在三个特征图 (feature map)中使用,每个 feature map 的每个 grid cell 都有三个 anchor 进行预测。分配规则:

  • 尺度越大的 feature map 越靠前,相对原图的下采样率越小,感受野越小, 所以相对可以预测一些尺度比较小的物体(小目标),分配到的 anchors 越小。

  • 尺度越小的 feature map 越靠后,相对原图的下采样率越大,感受野越大, 所以可以预测一些尺度比较大的物体(大目标),所以分配到的 anchors 越大。

  • 即在小特征图(feature map)上检测大目标,中等大小的特征图上检测中等目标, 在大特征图上检测小目标。

4

backbone & head 解读

[from, number, module, args] 参数

四个参数的意义分别是:

  1. 第一个参数 from :从哪一层获得输入,-1表示从上一层获得,[-1, 6]表示从上层和第6层两层获得。

  2. 第二个参数 number:表示有几个相同的模块,如果为9则表示有9个相同的模块。

  3. 第三个参数 module:模块的名称,这些模块写在common.py中。

  4. 第四个参数 args:类的初始化参数,用于解析作为 moudle 的传入参数。

下面以第一个模块Conv 为例介绍下common.py中的模块

Conv 模块定义如下:

class Conv(nn.Module):# Standard convolutiondef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups"""@Pargm c1: 输入通道数@Pargm c2: 输出通道数@Pargm k : 卷积核大小(kernel_size)@Pargm s : 卷积步长 (stride)@Pargm p : 特征图填充宽度 (padding)@Pargm g : 控制分组,必须整除输入的通道数(保证输入的通道能被正确分组)"""super().__init__()# https://oneflow.readthedocs.io/en/master/generated/oneflow.nn.Conv2d.html?highlight=Convself.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))

比如上面把width_multiple设置为了0.5,那么第一个 [64, 6, 2, 2] 就会被解析为 [3,64*0.5=32,6,2,2],其中第一个 3 为输入channel(因为输入),32 为输出channel。

关于调整网络大小的详解说明

在yolo.py (https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolo.py)的256行 有对yaml 文件的nc,depth_multiple等参数读取,具体代码如下:

anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']

"width_multiple"参数的作用前面介绍args参数中已经介绍过了,那么"depth_multiple"又是什么作用呢?

在yolo.py (https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolo.py) 的257行有对参数的具体定义:

n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain 暂且将这段代码当作公式(1)

其中 gd 就是depth_multiple的值,n的值就是backbone中列表的第二个参数:

根据公式(1)很容易看出 gd 影响 n 的大小,从而影响网络的结构大小。

后面各层之间的模块数量、卷积核大小和数量等也都产生了变化,YOLOv5l 与 YOLOv5s 相比较起来训练参数的大小成倍数增长,

其模型的深度和宽度也会大很多,这就使得 YOLOv5l 的精度值要比 YOLOv5s 好很多,因此在最终推理时的检测精度高,但是模型的推理速度更慢。

所以 YOLOv5 提供了不同的选择,如果想要追求推理速度可选用较小一些的模型如 YOLOv5s、YOLOv5m,如果想要追求精度更高对推理速度要求不高的可以选择其他两个稍大的模型。

如下面这张图:

ec8445cc7ae031b5da990a8a5c9c2592.pngyolov5模型复杂度比较图

5

Conv模块解读

网络结构预览

下面是根据yolov5s.yaml

(https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolov5s.yaml) 绘制的网络整体结构简化版。

cfda0b9528cfca49c9fa55391ce0a0fb.pngyolov5s网络整体结构图

  1. 详细的网络结构图:

    https://oneflow-static.oss-cn-beijing.aliyuncs.com/one-yolo/imgs/yolov5s.onnx.png

    通过export.py导出的onnx格式,并通过 https://netron.app/ 网站导出的图片(模型导出将在本教程的后续文章单独介绍)。

  2. 模块组件右边参数 表示特征图的的形状,比如 在 第 一 层( Conv )输入 图片形状为 [ 3, 640, 640] ,关于这些参数,可以固定一张图片输入到网络并通过yolov5s.yaml 

    (https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolov5s.yaml) 的模型参数计算得到,并且可以在工程models/yolo.py(https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolo.py) 通过代码进行print查看,详细数据可以参考附件表2.1。

6

yolo.py模块解读

文件地址(https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolo.py)

文件主要包含三大部分: Detect类、 Model类和 parse_model 函数

可以通过 python models/yolo.py --cfg yolov5s.yaml 运行该脚本进行观察

7

parse_model函数解读

def parse_model(d, ch):  # model_dict, input_channels(3)"""用在下面Model模块中解析模型文件(字典形式),并搭建网络结构这个函数其实主要做的就是: 更新当前层的args(参数),计算c2(当前层的输出channel) =>使用当前层的参数搭建当前层 =>生成 layers + save@Params d: model_dict 模型文件 字典形式 {dict:7}  [yolov5s.yaml](https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolov5s.yaml)中的6个元素 + ch#Params ch: 记录模型每一层的输出channel 初始ch=[3] 后面会删除@return nn.Sequential(*layers): 网络的每一层的层结构@return sorted(save): 把所有层结构中from不是-1的值记下 并排序 [4, 6, 10, 14, 17, 20, 23]"""LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")# 读取d字典中的anchors和parameters(nc、depth_multiple、width_multiple)anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']# na: number of anchors 每一个predict head上的anchor数 = 3na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5) 每一个predict head层的输出channel # 开始搭建网络# layers: 保存每一层的层结构# save: 记录下所有层结构中from中不是-1的层结构序号# c2: 保存当前层的输出channellayers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argsm = eval(m) if isinstance(m, str) else m  # eval stringsfor j, a in enumerate(args):# args是一个列表,这一步把列表中的内容取出来with contextlib.suppress(NameError):args[j] = eval(a) if isinstance(a, str) else a  # eval strings# 将深度与深度因子相乘,计算层深度。深度最小为1. n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain# 如果当前的模块m在本项目定义的模块类型中,就可以处理这个模块if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):# c1: 输入通道数 c2:输出通道数c1, c2 = ch[f], args[0] # 该层不是最后一层,则将通道数乘以宽度因子 也就是说,宽度因子作用于除了最后一层之外的所有层if c2 != no:  # if not output# make_divisible的作用,使得原始的通道数乘以宽度因子之后取整到8的倍数,这样处理一般是让模型的并行性和推理性能更好。c2 = make_divisible(c2 * gw, 8)# 将前面的运算结果保存在args中,它也就是这个模块最终的输入参数。args = [c1, c2, *args[1:]] # 根据每层网络参数的不同,分别处理参数 具体各个类的参数是什么请参考它们的__init__方法这里不再详细解释了if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]:# 这里的意思就是重复n次,比如conv这个模块重复n次,这个n 是上面算出来的 depth args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]# 构建整个网络模块 这里就是根据模块的重复次数n以及模块本身和它的参数来构建这个模块和参数对应的Modulem_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module# 获取模块(module type)具体名例如 models.common.Conv , models.common.C3 , models.common.SPPF 等。t = str(m)[8:-2].replace('__main__.', '')  #  replace函数作用是字符串"__main__"替换为'',在当前项目没有用到这个替换。np = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print"""如果x不是-1,则将其保存在save列表中,表示该层需要保存特征图。这里 x % i 与 x 等价例如在最后一层 : f = [17,20,23] , i = 24 y = [ x % i for x in ([f] if isinstance(f, int) else f) if x != -1 ]print(y) # [17, 20, 23] # 写成x % i 可能因为:i - 1 = -1 % i (比如 f = [-1],则 [x % i for x in f] 代表 [11] )"""save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0: # 如果是初次迭代,则新创建一个ch(因为形参ch在创建第一个网络模块时需要用到,所以创建网络模块之后再初始化ch)ch = []ch.append(c2)# 将所有的层封装为nn.Sequential , 对保存的特征图排序return nn.Sequential(*layers), sorted(save)

8

Model类解读

class Model(nn.Module):# YOLOv5 modeldef __init__(self, cfg='[yolov5s.yaml](https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolov5s.yaml)', ch=3, nc=None, anchors=None):  # model, input channels, number of classessuper().__init__()# 如果cfg已经是字典,则直接赋值,否则先加载cfg路径的文件为字典并赋值给self.yaml。if isinstance(cfg, dict): self.yaml = cfg  # model dictelse:  # is *.yaml  加载yaml模块import yaml  # for flow hub self.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)  # model dict  从yaml文件中加载出字典# Define model# ch: 输入通道数。 假如self.yaml有键‘ch’,则将该键对应的值赋给内部变量ch。假如没有‘ch’,则将形参ch赋给内部变量chch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels# 假如yaml中的nc和方法形参中的nc不一致,则覆盖yaml中的nc。if nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # override yaml valueif anchors: # anchors  先验框的配置LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # override yaml value# 得到模型,以及对应的保存的特征图列表。    self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelistself.names = [str(i) for i in range(self.yaml['nc'])]  # default names 初始化类名列表,默认为[0,1,2...]# self.inplace=True  默认True  节省内存self.inplace = self.yaml.get('inplace', True)# Build strides, anchors  确定步长、步长对应的锚框m = self.model[-1]  # Detect()if isinstance(m, Detect): # 检验模型的最后一层是Detect模块s = 256  # 2x min stridem.inplace = self.inplace# 计算三个feature map下采样的倍率  [8, 16, 32]m.stride = flow.tensor([s / x.shape[-2] for x in self.forward(flow.zeros(1, ch, s, s))])  # forward# 检查anchor顺序与stride顺序是否一致 anchor的顺序应该是从小到大,这里排一下序check_anchor_order(m)  # must be in pixel-space (not grid-space)# 对应的anchor进行缩放操作,原因:得到anchor在实际的特征图中的位置,因为加载的原始anchor大小是相对于原图的像素,但是经过卷积池化之后,特征图的长宽变小了。m.anchors /= m.stride.view(-1, 1, 1)self.stride = m.strideself._initialize_biases() # only run once  初始化偏置 # Init weights, biases# 调用oneflow_utils.py下initialize_weights初始化模型权重initialize_weights(self)self.info() # 打印模型信息LOGGER.info('')# 管理前向传播函数def forward(self, x, augment=False, profile=False, visualize=False):if augment:# 是否在测试时也使用数据增强  Test Time Augmentation(TTA)return self._forward_augment(x)  # augmented inference, Nonereturn self._forward_once(x, profile, visualize)  # single-scale inference, train# 带数据增强的前向传播def _forward_augment(self, x):img_size = x.shape[-2:]  # height, widths = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn flow.cat(y, 1), None  # augmented inference, train# 前向传播具体实现def _forward_once(self, x, profile=False, visualize=False):"""@params x: 输入图像@params profile: True 可以做一些性能评估@params feature_vis: True 可以做一些特征可视化"""# y: 存放着self.save=True的每一层的输出,因为后面的特征融合操作要用到这些特征图y, dt = [], []  # outputs# 前向推理每一层结构   m.i=index   m.f=from   m.type=类名   m.np=number of paramsfor m in self.model:# if not from previous layer   m.f=当前层的输入来自哪一层的输出  s的m.f都是-1if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return x# 将推理结果恢复到原图图片尺寸(逆操作)def _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)"""用在上面的__init__函数上将推理结果恢复到原图图片尺寸  Test Time Augmentation(TTA)中用到de-scale predictions following augmented inference (inverse operation)@params p: 推理结果@params flips:@params scale:@params img_size:"""if self.inplace:p[..., :4] /= scale  # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1]  # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0]  # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scaleif flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrp = flow.cat((x, y, wh, p[..., 4:]), -1)return p# 这个是TTA的时候对原图片进行裁剪,也是一种数据增强方式,用在TTA测试的时候。def _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indicesy[0] = y[0][:, :-i]  # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][:, i:]  # smallreturn y# 打印日志信息  前向推理时间def _profile_one_layer(self, m, x, dt):c = isinstance(m, Detect)  # is final layer, copy input as inplace fixo = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")# initialize biases into Detect(), cf is class frequencydef _initialize_biases(self, cf=None): # https://arxiv.org/abs/1708.02002 section 3.3# cf = flow.bincount(flow.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # Detect() modulefor mi, s in zip(m.m, m.stride):  # fromb = mi.bias.view(m.na, -1).detach()  # conv.bias(255) to (3,85)b[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)b[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else flow.log(cf / cf.sum())  # clsmi.bias = flow.nn.Parameter(b.view(-1), requires_grad=True)#  打印模型中最后Detect层的偏置biases信息(也可以任选哪些层biases信息)def _print_biases(self):"""打印模型中最后Detect模块里面的卷积层的偏置biases信息(也可以任选哪些层biases信息)"""m = self.model[-1]  # Detect() modulefor mi in m.m:  # fromb = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))def _print_weights(self):"""打印模型中Bottleneck层的权重参数weights信息(也可以任选哪些层weights信息)"""for m in self.model.modules():if type(m) is Bottleneck:LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights# fuse()是用来进行conv和bn层合并,为了提速模型推理速度。def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers"""用在detect.py、val.pyfuse model Conv2d() + BatchNorm2d() layers调用oneflow_utils.py中的fuse_conv_and_bn函数和common.py中Conv模块的fuseforward函数"""LOGGER.info('Fusing layers... ')for m in self.model.modules():# 如果当前层是卷积层Conv且有bn结构, 那么就调用fuse_conv_and_bn函数讲conv和bn进行融合, 加速推理if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, 'bn')  # remove batchnorm  移除bn remove batchnormm.forward = m.forward_fuse  # update forward 更新前向传播 update forward (反向传播不用管, 因为这种推理只用在推理阶段)self.info()  # 打印conv+bn融合后的模型信息return self# 打印模型结构信息 在当前类__init__函数结尾处有调用def info(self, verbose=False, img_size=640):  # print model informationmodel_info(self, verbose, img_size)def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, Detect):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return self

9

Detect类解读

class Detect(nn.Module):"""Detect模块是用来构建Detect层的,将输入feature map 通过一个卷积操作和公式计算到我们想要的shape, 为后面的计算损失或者NMS后处理作准备"""stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterexport = False  # export modedef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()#  nc:分类数量self.nc = nc  # number of classes  #  no:每个anchor的输出数self.no = nc + 5  # number of outputs per anchor# nl:预测层数,此次为3self.nl = len(anchors)  # number of detection layers#  na:anchors的数量,此次为3self.na = len(anchors[0]) // 2  # number of anchors#  grid:格子坐标系,左上角为(1,1),右下角为(input.w/stride,input.h/stride)self.grid = [flow.zeros(1)] * self.nl  # init gridself.anchor_grid = [flow.zeros(1)] * self.nl  # init anchor grid# 写入缓存中,并命名为anchorsself.register_buffer('anchors', flow.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)# 将输出通过卷积到 self.no * self.na 的通道,达到全连接的作用self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use inplace ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:# 向前传播时需要将相对坐标转换到grid绝对坐标系中self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xywh = (wh * 2) ** 2 * self.anchor_grid[i]  # why = flow.cat((xy, wh, conf), 4)z.append(y.view(bs, -1, self.no))return x if self.training else (flow.cat(z, 1),) if self.export else (flow.cat(z, 1), x)# 相对坐标转换到grid绝对坐标系def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].devicet = self.anchors[i].dtypeshape = 1, self.na, ny, nx, 2  # grid shapey, x = flow.arange(ny, device=d, dtype=t), flow.arange(nx, device=d, dtype=t)yv, xv = flow.meshgrid(y, x, indexing="ij")grid = flow.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)return grid, anchor_grid

10

附件

表2.1 yolov5s.yaml解析表

(https://github.com/Oneflow-Inc/one-yolov5/blob/main/models/yolov5s.yaml)

层数formmouduleargumentsinputoutput
0-1Conv[3, 32, 6, 2, 2][3, 640, 640][32, 320, 320]
1-1Conv[32, 64, 3, 2][32, 320, 320][64, 160, 160]
2-1C3[64, 64, 1][64, 160, 160][64, 160, 160]
3-1Conv[64, 128, 3, 2][64, 160, 160][128, 80, 80]
4-1C3[128, 128, 2][128, 80, 80][128, 80, 80]
5-1Conv[128, 256, 3, 2][128, 80, 80][256, 40, 40]
6-1C3[256, 256, 3][256, 40, 40][256, 40, 40]
7-1Conv[256, 512, 3, 2][256, 40, 40][512, 20, 20]
8-1C3[512, 512, 1][512, 20, 20][512, 20, 20]
9-1SPPF[512, 512, 5][512, 20, 20][512, 20, 20]
10-1Conv[512, 256, 1, 1][512, 20, 20][256, 20, 20]
11-1Upsample[None, 2, 'nearest'][256, 20, 20][256, 40, 40]
12[-1, 6]Concat[1][1, 256, 40, 40],[1, 256, 40, 40][512, 40, 40]
13-1C3[512, 256, 1, False][512, 40, 40][256, 40, 40]
14-1Conv[256, 128, 1, 1][256, 40, 40][128, 40, 40]
15-1Upsample[None, 2, 'nearest'][128, 40, 40][128, 80, 80]
16[-1, 4]Concat[1][1, 128, 80, 80],[1, 128, 80, 80][256, 80, 80]
17-1C3[256, 128, 1, False][256, 80, 80][128, 80, 80]
18-1Conv[128, 128, 3, 2][128, 80, 80][128, 40, 40]
19[-1, 14]Concat[1][1, 128, 40, 40],[1, 128, 40, 40][256, 40, 40]
20-1C3[256, 256, 1, False][256, 40, 40][256, 40, 40]
21-1Conv[256, 256, 3, 2][256, 40, 40][256, 20, 20]
22[-1, 10]Concat[1][1, 256, 20, 20],[1, 256, 20, 20][512, 20, 20]
23-1C3[512, 512, 1, False][512, 20, 20][512, 20, 20]
24[17, 20, 23]Detect[80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]][1, 128, 80, 80],[1, 256, 40, 40],[1, 512, 20, 20][1, 3, 80, 80, 85],[1, 3, 40, 40, 85],[1, 3, 20, 20, 85]

11

参考文章

  • https://zhuanlan.zhihu.com/p/436891962?ivk_sa=1025922q

  • https://zhuanlan.zhihu.com/p/110204563

  • https://www.it610.com/article/1550621248474648576.htm


其他人都在看

  • OneFlow-ONNX v0.6.0正式发布

  • 下载量突破10亿,MinIO的开源启示录

  • 关于ChatGPT的一切;CUDA入门之矩阵乘

  • 李白:你的模型权重很不错,可惜被我没收了

  • 单RTX3090训练YOLOv5s,时间减少11个小时

  • 比快更快,开源Stable Diffusion刷新作图速度

  • OneEmbedding:单卡训练TB级推荐模型不是梦

欢迎Star、试用OneFlow最新版本:GitHub - Oneflow-Inc/oneflow: OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient.OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient. - GitHub - Oneflow-Inc/oneflow: OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient.https://github.com/Oneflow-Inc/oneflow/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/38243.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

可见光遥感图像目标检测(三)文字场景检测之Arbitrary

前言 前面介绍了关于可见光遥感图像目标检测任务主要面临的问题&#xff0c;现在对旋转目标的问题进行优化&#xff0c;为了便于大家理解与之前通用目标检测区别&#xff0c;采用Faster-Rcnn网络模型的架构对旋转目标的检测进行改进。 本教程禁止转载。同时&#xff0c;本教程来…

yolov5的简单使用

yolov5是什么 来自chatGPT的描述如下 YOLOv5是一种目标检测算法&#xff0c;它是YOLO系列算法的最新版本&#xff0c;由Joseph Redmon和Alexey Bochkovskiy等人开发。与之前的版本相比&#xff0c;YOLOv5在准确性和速度方面都有所提高。YOLOv5使用一种名为“Bag of Freebies”…

yolov3_spp项目中的各种配置文件读取

目录 1. open 函数 2. cfg文件夹下文档解析 2.1 hyp.yaml 2.2 my_yolov_3.cfg 3. data文件夹下文档解析 3.1 my_data.data 3.2 其它 后缀名 .ymal .txt .json .cfg .data .names .shapes 可以自定义后缀名&#xff1f;&#xff1f; pyhon文件操作大…

目标检测算法——YOLOv5/YOLOv7改进之结合CBAM注意力机制

&#x1f496;&#x1f496;>>>加勒比海带&#xff0c;QQ2479200884<<<&#x1f496;&#x1f496; &#x1f340;&#x1f340;>>>【YOLO魔法搭配&论文投稿咨询】<<<&#x1f340;&#x1f340; ✨✨>>>学习交流 | 温澜潮…

​目标检测算法——YOLOv5/YOLOv7改进之结合Criss-Cross Attention

&#xff08;一&#xff09;前沿介绍 论文题目&#xff1a;CCNet: Criss-Cross Attention for Semantic Segmentation 论文地址&#xff1a;https://arxiv.org/pdf/1811.11721.pdf 代码地址&#xff1a;https://github.com/shanglianlm0525/CvPytorch 本文是ICCV2019的语义分…

目标检测算法——YOLOv5/YOLOv7改进之GSConv+Slim Neck(优化成本)

>>>深度学习Tricks&#xff0c;第一时间送达<<< 目录 &#xff08;一&#xff09;前言 1.GSConv模块 2.Slim Neck&#xff08;GSBottleneckVoVGSCSP&#xff09; &#xff08;二&#xff09;YOLOv5改进之GSConvSlim Neck 1.配置common.py文件 2.配置yo…

目标检测算法——YOLOv5改进|增加小目标检测层

&#x1f496;&#x1f496;>>>加勒比海带&#xff0c;QQ2479200884<<<&#x1f496;&#x1f496; &#x1f340;&#x1f340;>>>【YOLO魔法搭配&论文投稿咨询】<<<&#x1f340;&#x1f340; ✨✨>>>学习交流 | 温澜潮…

【学习笔记】YOLOv5训练自己的数据集

训练自己的数据集进行总结&#xff0c;方便接下来的学习 目录 1.设置文件夹 2.标记自己的数据集 2.1在百度图片上找到自己想要的图片并批量下载 2.2labelimg软件的使用 3.修改配置文件 3.1AOCAO parameter.yaml 3.2AOCAO model.yaml 4.开始训练 4.1改代码 4.2训练过…

Tips and tricks for Neural Networks 深度学习训练神经网络的技巧总结(不定期更新)

文章目录 本文说明Debug 技巧Overfit一个简单的Batch无法复现之前的结果 数据处理平衡数据数据增强&#xff08;Data Augmentation&#xff09;图片增强 使用Embedding数据压缩数据标准化&#xff08;Normalization&#xff09;标签平滑&#xff08;LabelSmoothing&#xff09;…

官方正品 | Ultralytics YOLOv8算法来啦(尖端SOTA模型)

&#x1f496;&#x1f496;>>>加勒比海带&#xff0c;QQ2479200884<<<&#x1f496;&#x1f496; &#x1f340;&#x1f340;>>>【YOLO魔法搭配&论文投稿咨询】<<<&#x1f340;&#x1f340; ✨✨>>>学习交流 | 温澜潮…

暑期学习杂记

7月6日 粗略复习51&#xff08;问了学长后&#xff0c;我打算直接看小车视频&#xff0c;遇到不会的再回去看江科大&#xff09; 51单片机 LED灯共阳 数码管共阴 7月7日 定时器时间计算 [参考(1条消息) 51单片机定时器使用与计算-----day3_单片机定时器定时时间计算_电子笔记…

Raki的读paper小记:Retentive Network: A Successor to Transformer for Large Language Models

Abstract&Introduction&Related Work 研究任务 语言模型的基础架构已有方法和相关工作 S4&#xff0c;H3&#xff0c;Hyena&#xff0c;Linear Transformer用核函数近似注意力&#xff0c;以便将自回归推理重写为循环形式回归到使用循环模型进行高效推理&#xff0c;但…

Coremail RSAC大会观察:在邮件安全领域AI既是矛也是盾

《Coremail RSAC大会观察&#xff1a;在邮件安全领域AI既是矛也是盾》 全球网络安全界的盛会——2023年RSAC大会于当地时间4月24日-27日在美国旧金山召开&#xff0c;大会以“Stronger Together&#xff08;一起变得更强大&#xff09;”为主题&#xff0c;议程主要包含安全研…

小红书软件,自动文案神器,爆文效率UP

小红书软件&#xff0c;自动文案神器&#xff0c;爆文效率UP&#xff01;#小红书推广#小红书营销#百收小红书 Hello大家好&#xff0c;我是百收&#xff0c;今天给大家分享的是小红书&#xff0c;三步快速打造爆款笔记可批量可复制。那话不多说先给大家看一下呃&#xff0c;学…

5个AI人工智能平台推荐,绘画、写作文案、文章一键生成

随着人工智能技术的快速发展&#xff0c;AI原创文章写作平台也愈加成熟和完善&#xff0c;让文章的创作变得更加便捷、高效、优质。下面介绍五个国内知名的AI原创文章写作平台&#xff0c;它们各有特色&#xff0c;可以满足您的不同需求。 5个AI人工智能平台推荐&#xff1a; …

沉浸式翻译

chrome沉浸式翻译插件 网页双语翻译&#xff0c;完全免费使用&#xff0c;支持Deepl/Google/Bing/腾讯/有道等。 一款免费、用户友好、简洁、革命性、广受好评的人工智能双语网络翻译扩展程序&#xff0c;可帮助您有效地弥合信息差距&#xff0c;也可在移动设备上使用&#xff…

ChatGPT新功能探索,沉浸式内容处理体验

ChatGPT已经正在广泛被企业接受&#xff0c;用来大幅提高效率。但传统的聊天模式在大篇幅文字处理时并不好用。因此新功能“沉浸内容处理模式”被推出&#xff0c;用来应对论文、邮件、文案的编写和优化。那我们就来体验一下这个新功能效果如何。以处理工作邮件为例。 一、从传…

大型语言模型 (LLM) 的两条发展路线:Finetune v.s. Prompt

前言 如果你对这篇文章感兴趣&#xff0c;可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」&#xff0c;查看完整博客分类与对应链接。 在大型语言模型的研究中&#xff0c;研究者对其有两种不同的期待&#xff0c;也可以理解为是两种不同的路线&#xff0c;具…

违禁敏感词检测

很多站长和自媒体人都有这样的烦恼&#xff0c;因为不慎发布违禁、违规内容比如涉黄、恐怖暴力、赌博、低俗辱骂、政治敏感等&#xff0c;导致文章下架或者网站整改。 另外&#xff0c;自从新《广告法》出台后&#xff0c;作为广告、营销人等群体在写文案的过程中必须时时注意新…

ChatGPT神器Code Interpreter,用做数据分析如此丝滑!

前几天&#xff0c;OpenAI 宣布要在一周之内将官方插件 Code Interpreter 通过设置中的 Beta 面板向所有 ChatGPT Plus 用户提供。 这个消息让很多人激动了起来&#xff0c;毕竟此前 Code Interpreter 一直处于封闭测试阶段&#xff0c;只有一小部分用户真正使用过。这些内测用…