STM32智能工业监控系统教程

目录

  1. 引言
  2. 环境准备
  3. 智能工业监控系统基础
  4. 代码实现:实现智能工业监控系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化
  5. 应用场景:工业监控与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

智能工业监控系统通过STM32嵌入式系统结合各种传感器、执行器和通信模块,实现对工业环境和设备数据的实时监控、自动处理和数据传输。本文将详细介绍如何在STM32系统中实现一个智能工业监控系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  1. 开发板:STM32F4系列或STM32H7系列开发板
  2. 调试器:ST-LINK V2或板载调试器
  3. 传感器:如温湿度传感器、振动传感器、气体传感器、电流传感器等
  4. 执行器:如继电器模块、风扇、电动机控制模块等
  5. 通信模块:如Wi-Fi模块、LoRa模块
  6. 显示屏:如OLED显示屏
  7. 按键或旋钮:用于用户输入和设置
  8. 电源:电源适配器

软件准备

  1. 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  2. 调试工具:STM32 ST-LINK Utility或GDB
  3. 库和中间件:STM32 HAL库和FreeRTOS

安装步骤

  1. 下载并安装STM32CubeMX
  2. 下载并安装STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序

3. 智能工业监控系统基础

控制系统架构

智能工业监控系统由以下部分组成:

  1. 数据采集模块:用于采集工业环境的温湿度、振动、气体浓度、电流等数据
  2. 数据处理与控制模块:对采集的数据进行处理和分析,生成控制信号
  3. 通信与网络系统:实现工业数据与服务器或其他设备的通信
  4. 显示系统:用于显示工业环境数据和系统状态
  5. 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过各种传感器采集工业环境和设备数据,并实时显示在OLED显示屏上。系统通过数据处理和网络通信,实现对工业数据的监测和管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。

4. 代码实现:实现智能工业监控系统

4.1 数据采集模块

配置温湿度传感器

使用STM32CubeMX配置I2C接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "dht22.h"I2C_HandleTypeDef hi2c1;void I2C1_Init(void) {hi2c1.Instance = I2C1;hi2c1.Init.ClockSpeed = 100000;hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;hi2c1.Init.OwnAddress1 = 0;hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;hi2c1.Init.OwnAddress2 = 0;hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;HAL_I2C_Init(&hi2c1);
}void Read_Temperature_Humidity(float* temperature, float* humidity) {DHT22_ReadAll(temperature, humidity);
}int main(void) {HAL_Init();SystemClock_Config();I2C1_Init();DHT22_Init();float temperature, humidity;while (1) {Read_Temperature_Humidity(&temperature, &humidity);HAL_Delay(1000);}
}
配置振动传感器

使用STM32CubeMX配置ADC接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"ADC_HandleTypeDef hadc1;void ADC_Init(void) {__HAL_RCC_ADC1_CLK_ENABLE();ADC_ChannelConfTypeDef sConfig = {0};hadc1.Instance = ADC1;hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;hadc1.Init.Resolution = ADC_RESOLUTION_12B;hadc1.Init.ScanConvMode = DISABLE;hadc1.Init.ContinuousConvMode = ENABLE;hadc1.Init.DiscontinuousConvMode = DISABLE;hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc1.Init.NbrOfConversion = 1;hadc1.Init.DMAContinuousRequests = DISABLE;hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;HAL_ADC_Init(&hadc1);sConfig.Channel = ADC_CHANNEL_0;sConfig.Rank = 1;sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}uint32_t Read_Vibration(void) {HAL_ADC_Start(&hadc1);HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);return HAL_ADC_GetValue(&hadc1);
}int main(void) {HAL_Init();SystemClock_Config();ADC_Init();uint32_t vibration_level;while (1) {vibration_level = Read_Vibration();HAL_Delay(1000);}
}
配置气体传感器

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "usart.h"
#include "gas_sensor.h"UART_HandleTypeDef huart1;void UART1_Init(void) {huart1.Instance = USART1;huart1.Init.BaudRate = 9600;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;HAL_UART_Init(&huart1);
}uint32_t Read_Gas_Concentration(void) {return Gas_Sensor_Read();
}int main(void) {HAL_Init();SystemClock_Config();UART1_Init();Gas_Sensor_Init();uint32_t gas_concentration;while (1) {gas_concentration = Read_Gas_Concentration();HAL_Delay(1000);}
}
配置电流传感器

使用STM32CubeMX配置ADC接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"ADC_HandleTypeDef hadc1;void ADC_Init(void) {__HAL_RCC_ADC1_CLK_ENABLE();ADC_ChannelConfTypeDef sConfig = {0};hadc1.Instance = ADC1;hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;hadc1.Init.Resolution = ADC_RESOLUTION_12B;```chadc1.Init.ScanConvMode = DISABLE;hadc1.Init.ContinuousConvMode = ENABLE;hadc1.Init.DiscontinuousConvMode = DISABLE;hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc1.Init.NbrOfConversion = 1;hadc1.Init.DMAContinuousRequests = DISABLE;hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;HAL_ADC_Init(&hadc1);sConfig.Channel = ADC_CHANNEL_1;sConfig.Rank = 1;sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}uint32_t Read_Current(void) {HAL_ADC_Start(&hadc1);HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);return HAL_ADC_GetValue(&hadc1);
}int main(void) {HAL_Init();SystemClock_Config();ADC_Init();uint32_t current_value;while (1) {current_value = Read_Current();HAL_Delay(1000);}
}

4.2 数据处理与控制模块

数据处理模块将传感器数据转换为可用于控制系统的数据,并进行必要的计算和分析。

工业数据处理与控制算法

实现一个简单的工业数据处理与控制算法,根据传感器数据控制风扇和电动机:

#define TEMP_THRESHOLD 50.0
#define VIBRATION_THRESHOLD 2000
#define GAS_THRESHOLD 1000
#define CURRENT_THRESHOLD 3000void Process_Industrial_Data(float temperature, uint32_t vibration_level, uint32_t gas_concentration, uint32_t current_value) {if (temperature > TEMP_THRESHOLD || vibration_level > VIBRATION_THRESHOLD || gas_concentration > GAS_THRESHOLD) {// 打开风扇HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET); } else {// 关闭风扇HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET); }if (current_value > CURRENT_THRESHOLD) {// 打开电动机HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET); } else {// 关闭电动机HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET); }
}void GPIOB_Init(void) {__HAL_RCC_GPIOB_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}int main(void) {HAL_Init();SystemClock_Config();GPIOB_Init();ADC_Init();I2C1_Init();UART1_Init();DHT22_Init();Gas_Sensor_Init();uint32_t vibration_level, gas_concentration, current_value;float temperature;while (1) {Read_Temperature_Humidity(&temperature, NULL);vibration_level = Read_Vibration();gas_concentration = Read_Gas_Concentration();current_value = Read_Current();Process_Industrial_Data(temperature, vibration_level, gas_concentration, current_value);HAL_Delay(1000);}
}

4.3 通信与网络系统实现

配置Wi-Fi模块

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "usart.h"
#include "wifi_module.h"UART_HandleTypeDef huart2;void UART2_Init(void) {huart2.Instance = USART2;huart2.Init.BaudRate = 115200;huart2.Init.WordLength = UART_WORDLENGTH_8B;huart2.Init.StopBits = UART_STOPBITS_1;huart2.Init.Parity = UART_PARITY_NONE;huart2.Init.Mode = UART_MODE_TX_RX;huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart2.Init.OverSampling = UART_OVERSAMPLING_16;HAL_UART_Init(&huart2);
}void Send_Industrial_Data_To_Server(float temperature, uint32_t vibration_level, uint32_t gas_concentration, uint32_t current_value) {char buffer[128];sprintf(buffer, "Temp: %.2f, Vibration: %lu, Gas: %lu, Current: %lu",temperature, vibration_level, gas_concentration, current_value);HAL_UART_Transmit(&huart2, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
}int main(void) {HAL_Init();SystemClock_Config();UART2_Init();GPIOB_Init();ADC_Init();I2C1_Init();UART1_Init();DHT22_Init();Gas_Sensor_Init();uint32_t vibration_level, gas_concentration, current_value;float temperature;while (1) {Read_Temperature_Humidity(&temperature, NULL);vibration_level = Read_Vibration();gas_concentration = Read_Gas_Concentration();current_value = Read_Current();Send_Industrial_Data_To_Server(temperature, vibration_level, gas_concentration, current_value);HAL_Delay(1000);}
}

4.4 用户界面与数据可视化

配置OLED显示屏

使用STM32CubeMX配置I2C接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"void Display_Init(void) {OLED_Init();
}

然后实现数据展示函数,将工业环境数据展示在OLED屏幕上:

void Display_Data(float temperature, uint32_t vibration_level, uint32_t gas_concentration, uint32_t current_value) {char buffer[32];sprintf(buffer, "Temp: %.2f C", temperature);OLED_ShowString(0, 0, buffer);sprintf(buffer, "Vibration: %lu", vibration_level);OLED_ShowString(0, 1, buffer);sprintf(buffer, "Gas: %lu", gas_concentration);OLED_ShowString(0, 2, buffer);sprintf(buffer, "Current: %lu", current_value);OLED_ShowString(0, 3, buffer);
}int main(void) {HAL_Init();SystemClock_Config();I2C1_Init();Display_Init();GPIOB_Init();ADC_Init();I2C1_Init();UART1_Init();DHT22_Init();Gas_Sensor_Init();uint32_t vibration_level, gas_concentration, current_value;float temperature;while (1) {Read_Temperature_Humidity(&temperature, NULL);vibration_level = Read_Vibration();gas_concentration = Read_Gas_Concentration();current_value = Read_Current();// 显示工业环境数据Display_Data(temperature, vibration_level, gas_concentration, current_value);HAL_Delay(1000);}
}

5. 应用场景:工业监控与优化

工业设备监控

智能工业监控系统可以用于监控工业设备的运行状态,通过实时监测温湿度、振动、气体浓度等参数,预防设备故障,提高生产效率。

环境安全监控

智能工业监控系统可以实时监测工业环境的气体浓度、电流等参数,及时发现和处理安全隐患,保障生产安全。

能耗管理

智能工业监控系统可以通过监测和管理工业设备的能耗,实现能耗优化,降低生产成本。

远程监控

智能工业监控系统可以通过网络实现远程监控和管理,提供灵活便捷的工业环境和设备监控解决方案。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

 

6. 问题解决方案与优化

常见问题及解决方案

传感器数据不准确

确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。

解决方案:检查传感器与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。同时,定期对传感器进行校准,确保数据准确。

工业数据处理不稳定

优化处理算法和硬件配置,减少数据处理的不稳定性,提高系统反应速度。

解决方案:优化处理算法,调整参数,减少振荡和超调。使用高精度传感器,提高数据采集的精度和稳定性。选择更高效的处理器,提高数据处理的响应速度。

数据传输失败

确保Wi-Fi模块与STM32的连接稳定,优化通信协议,提高数据传输的可靠性。

解决方案:检查Wi-Fi模块与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。优化通信协议,减少数据传输的延迟和丢包率。选择更稳定的通信模块,提升数据传输的可靠性。

显示屏显示异常

检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。

优化建议

数据集成与分析

集成更多类型的传感器数据,使用数据分析技术进行工业状态的预测和优化。

建议:增加更多环境监测传感器,如噪声传感器、压力传感器等。使用云端平台进行数据分析和存储,提供更全面的工业环境监测和管理服务。

用户交互优化

改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。

建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时环境参数图表、历史记录等。

智能化控制提升

增加智能决策支持系统,根据历史数据和实时数据自动调整工业管理策略,实现更高效的工业管理和控制。

建议:使用数据分析技术分析工业数据,提供个性化的管理建议。结合历史数据,预测可能的问题和需求,提前优化控制策略。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中实现智能工业监控系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能工业监控系统。

在未来的发展中,智能工业监控系统可以进一步结合人工智能和大数据分析技术,提升系统的智能化程度,为工业环境监测和管理提供更强大的技术支持。希望本教程能够为读者提供有价值的参考和指导,助力智能工业监控系统的开发与实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/382583.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Chapter18 基于物理的渲染——Shader入门精要学习

Chapter18 基于物理的渲染 一、PBS理论和数学基础1.光是什么微表面模型 2.渲染方程3.精确光源4.双向反射分布函数 BRDF5.漫反射项(Lambert 模型)Lambertian BRDF为:Disney BRDF中漫反射项 6.高光反射项微面元理论BRDF的高光反射项①菲涅尔反射…

C# 委托函数 delegate

在C#中,委托(Delegate)是一种特殊的类型,它可以持有对方法的引用。 委托是实现事件的基础。事件本质上是多播委托,允许多个方法被触发 委托允许你将方法作为参数传递给其他方法,或者将方法作为返回值从方法…

Redis核心技术与实战学习笔记

Redis核心技术与实战学习笔记 最近想沉下心来看下redis,买了蒋德钧老师的《Redis 核心技术与实战》,这里记录一些学习笔记 希望能够坚持下去有想一起学习的童鞋,可以点击跳转到文章尾部获取学习资源,仅供学习不要用于任何商业用途!!! redis知识全景图 …

中断和EXIT原理介绍

中断和EXIT原理介绍 一、中断的介绍?二、EXIT的介绍1.EXIT作用2.EXIT的详情3.EXIT中AFIO复用的作用4.STM32中AFIO复用作用 一、中断的介绍? 二、EXIT的介绍 EXTI(Extern Interrupt)外部中断 1.EXIT作用 EXTI可以监测指定GPIO口…

编写SpringBoot的自定义starter包

starter项目 先来看一下Starter的官方解释: Spring Boot Starter 是一种方便的依赖管理方式,它封装了特定功能或技术栈的所有必要依赖项和配置,使得开发者可以快速地将这些功能集成到Spring Boot项目中。Spring Boot官方提供了一系列的Star…

OpenTeleVision复现及机器人迁移

相关信息 标题 Open-TeleVision: Teleoperation with Immersive Active Visual Feedback作者 Xuxin Cheng1 Jialong Li1 Shiqi Yang1 Ge Yang2 Xiaolong Wang1 UC San Diego1 MIT2主页 https://robot-tv.github.io/链接 https://robot-tv.github.io/resources/television.pdf代…

展馆导览系统架构解析,从需求分析到上线运维

在物质生活日益丰富的当下,人们对精神世界的追求愈发强烈,博物馆、展馆、纪念馆等场所成为人们丰富知识、滋养心灵的热门选择。与此同时,人们对展馆的导航体验也提出了更高要求,展馆导览系统作为一种基于室内外地图相结合的位置引…

NSSCTF-2021年SWPU联合新生赛

[SWPUCTF 2021 新生赛]finalrce 这道题目考察tee命令和转义符\ 这题主要是,遇到一种新的符号,"\"—转义符。我理解的作用就是在一些控制字符被过滤的时候,可以用转义符,让控制符失去原本的含义,变为字面量…

【数据结构 | 哈希表】一文了解哈希表(散列表)

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…

Spring框架、02SpringAOP

SpringAOP 日志功能 基本方法 分析代码问题 目前代码存在两个问题 代码耦合性高:业务代码和日志代码耦合在了一起 代码复用性低:日志代码在每个方法都要书写一遍 问题解决方案 使用动态代理,将公共代码抽取出来 JDK动态代理 使用JDK动…

英迈中国与 Splashtop 正式达成战略合作协议

2024年7月23日,英迈中国与 Splashtop 正式达成战略合作协议,英迈中国正式成为其在中国区的战略合作伙伴。此次合作将结合 Splashtop 先进的远程桌面控制技术和英迈在技术服务与供应链管理领域的专业优势,为中国地区的用户带来更加安全的远程访…

IEDA怎么把springboot项目 启动多个

利用Idea提供的Edit Configurations配置应用参数。 点击Modify Options进行添加应用参数: 确保这里勾选

centos系统mysql主从复制(一主一从)

文章目录 mysql80主从复制(一主一从)一、环境二、服务器master1操作1.开启二进制日志2. 创建复制用户3. 服务器 slave1操作4. 在主数据库中添加数据 mysql80主从复制(一主一从) 一、环境 准备两台服务器,都进行以下操…

前端在浏览器总报错,且获取请求头中token的值为null

前端请求总是失败说受跨域请求影响,但前后端配置已经没有问题了,如下: package com.example.shop_manage_sys.config;import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.annotation.Conf…

Java使用AsposePDF和AsposeWords进行表单填充

声明:本文为作者Huathy原创文章,禁止转载、爬取!否则,本人将保留追究法律责任的权力! 文章目录 AsposePDF填充表单adobe pdf表单准备引入依赖编写测试类 AsposeWord表单填充表单模板准备与生成效果引入依赖编码 参考文…

代理协议解析:如何根据需求选择HTTP、HTTPS或SOCKS5?

代理IP协议是一种网络代理技术,可以实现隐藏客户端IP地址、加速网站访问、过滤网络内容、访问内网资源等功能。常用的IP代理协议主要有Socks5代理、HTTP代理、HTTPS代理这三种。代理IP协议主要用于分组交换计算机通信网络的互联系统中使用,只负责数据的路…

高效部署Modbus转MQTT网关:Modbus RTU、Modbus TCP转MQTT

钡铼Modbus转MQTT网关,简而言之,就是通过将Modbus协议(包括Modbus RTU和Modbus TCP)的数据转换为MQTT协议的数据格式,从而实现设备数据的上传和云端控制指令的下发。这一转换过程使得设备能够与基于MQTT协议的云平台进…

修改 Tomcat 默认端口号最简单的方法

前言 每次在创建一个新的Maven项目之后,启动项目总会报8080端口号被占用的问题,既然每次都有这样的困扰,那不如一了百了,直接修改默认的8080端口号。 (如果还是想要默认端口号。可参考我主页文章杀死占用了8080的进程…

CSA笔记4-包/源管理命令以及本地光盘仓库搭建

包/源管理命令 1.rpm是最基础的rmp包的安装命令,需要提前下载相关安装包和依赖包 2.yum/dnf是基于rpm包的自动安装命令,可以自动在仓库中匹配安装软件和依赖包 注意:以上是安装命令,以下是安装源 3.光盘源:是指安装系统时后的…

Pytorch TensorBoard的使用

from torch.utils.tensorboard import SummaryWriter writer SummaryWriter("logs")for i in range(100):writer.add_scalar("yx",i,i) writer.close() 第一个参数 y2x: 这是图表的标题或标签。它会显示在TensorBoard界面中,帮助你识别这条曲线。 第二个参…