【LLM】-07-提示工程-聊天机器人

目录

1、给定身份

1.1、基础代码

1.2、聊天机器人

2、构建上下文

3、订餐机器人

3.1、窗口可视化

3.2、构建机器人

3.3、创建JSON摘要


 

利用会话形式,与具有个性化特性(或专门为特定任务或行为设计)的聊天机器人进行深度对话。

在 Chat 网页界面中,我们的消息称为用户消息,而ChatGPT 的消息称为助手消息。

但在构建聊天机器人时,在发送了系统消息之后,您的角色可以仅作为用户 (user) ;也可以在用户和助手 (assistant) 之间交替,从而提供对话上下文。

1、给定身份

第一条消息中,我们以系统身份发送系统消息 (system message) ,它提供了一个总体的指示。

系统消息则有助于设置助手的行为和角色,并作为对话的高级指示。

1.1、基础代码

import openaiopenai.api_key = "EMPTY"
openai.api_base = "http://192.168.1.1:20000/v1"def get_completion_from_messages(messages, model="chatglm3-6b", temperature=0):response = openai.ChatCompletion.create(model=model,messages=messages,temperature=temperature, # 控制模型输出的随机程度)#     print(str(response.choices[0].message))return response.choices[0].message["content"]# 中文
messages =  [{'role':'system', 'content':'你是一个像小孩子一样说话的助手。'},{'role':'user', 'content':'给我讲个笑话'},{'role':'assistant', 'content':'鸡为什么过马路'},{'role':'user', 'content':'我不知道'}  ]response = get_completion_from_messages(messages, temperature=1)
print(response)

1.2、聊天机器人

系统消息来定义:“你是一个友好的聊天机器人”,第一个用户消息:“嗨,我叫Isa。”

# 中文
messages =  [  
{'role':'system', 'content':'你是个友好的聊天机器人。'},    
{'role':'user', 'content':'Hi, 我是Isa。'}  ]response = get_completion_from_messages(messages, temperature=1)
print(response)

你好,Isa!很高兴认识你。有什么我可以帮忙的吗?

 

2、构建上下文

当我们想gpt询问一个它不知道的问题,由于缺少上下文,他无法给出一个正确的答案。

messages =  [{'role':'system', 'content':'你是个友好的聊天机器人。需要真实的回答问题'},{'role':'user', 'content':'好,你能提醒我,我的名字是什么吗?'}
]response = get_completion_from_messages(messages, temperature=1)print(response)

当你提到“我的名字是什么时”,我理解你是想问你自己叫什么名字。但是作为人工智能,我无法知道你的个人信息。请告诉我你的名字,我会尽量帮助你回答问题。

 添加上下文内容

messages =  [{'role':'system', 'content':'你是个友好的聊天机器人。注意区分人物的你我他含义'},{'role':'user', 'content':'Hi, 我是Isa'},{'role':'assistant', 'content': "Hi Isa! 很高兴认识你。今天有什么可以帮到你的吗?"},{'role':'user', 'content':'是的,你可以提醒我, 我的名字是什么?'}  ]response = get_completion_from_messages(messages, temperature=1)print(response)

当然可以,你的名字是Isa。有什么我可以帮你记住的吗?

 

3、订餐机器人

3.1、窗口可视化

pip install panelimport panel as pn
import numpy as np
import pandas as pd# 创建随机数据
np.random.seed(0)
data = pd.DataFrame(np.random.randn(100, 2), columns=["A", "B"])# 创建一个散点图
scatter = pn.pane.DataFrame(data, width=800, height=400)# 显示散点图
scatter.show()

Launching server at http://localhost:62221 

a76db54fdd1b4e99b26d9a39aa7c044e.png

3.2、构建机器人

# 中文
import panel as pn  # GUI
import openaiopenai.api_key = "EMPTY"
openai.api_base = "http://192.168.1.1:20000/v1"def get_completion_from_messages(messages, model="chatglm3-6b", temperature=0.7):response = openai.ChatCompletion.create(model=model,messages=messages,temperature=temperature,  # 控制模型输出的随机程度)# print(str(response.choices[0].message))return response.choices[0].message["content"]def collect_messages(_):prompt = inp.value_inputinp.value = ''context.append({'role': 'user', 'content': f"{prompt}"})response = get_completion_from_messages(context)context.append({'role': 'assistant', 'content': f"{response}"})panels.append(pn.Row('User:', pn.pane.Markdown(prompt, width=600)))panels.append(pn.Row('Assistant:', pn.pane.Markdown(response, width=600, css_classes=['custom-markdown'])))return pn.Column(*panels)# 在适当的位置添加自定义CSS
html_code = """
<style>
.custom-markdown {background-color: #F6F6F6;
}
</style>
"""
pn.extension(raw_css=[html_code])panels = []  # collect displaycontext = [{'role': 'system', 'content': """ 
你是订餐机器人,为披萨餐厅自动收集订单信息。
你要首先问候顾客。然后等待用户回复收集订单信息。收集完信息需确认顾客是否还需要添加其他内容。
最后需要询问是否自取或外送,如果是外送,你要询问地址。
最后告诉顾客订单总金额,并送上祝福。请确保明确所有选项、附加项和尺寸,以便从菜单中识别出该项唯一的内容。
你的回应应该以简短、非常随意和友好的风格呈现。菜单包括:菜品:
意式辣香肠披萨(大、中、小) 12.95、10.00、7.00
芝士披萨(大、中、小) 10.95、9.25、6.50
茄子披萨(大、中、小) 11.95、9.75、6.75
薯条(大、小) 4.50、3.50
希腊沙拉 7.25配料:
奶酪 2.00
蘑菇 1.50
香肠 3.00
加拿大熏肉 3.50
AI酱 1.50
辣椒 1.00饮料:
可乐(大、中、小) 3.00、2.00、1.00
雪碧(大、中、小) 3.00、2.00、1.00
瓶装水 5.00
"""}]  # accumulate messagesinp = pn.widgets.TextInput(value="Hi", placeholder='Enter text here…')button_conversation = pn.widgets.Button(name="Chat!")interactive_conversation = pn.bind(collect_messages, button_conversation)dashboard = pn.Column(inp,pn.Row(button_conversation),pn.panel(interactive_conversation, loading_indicator=True, height=300),
)dashboard.show()

页面显示效果,及部分回复内容 

777e700dda3143d59d894a74512ecc46.png

3.3、创建JSON摘要

temperature=0 ,每次生成相同内容,保证结果可预测

# context 参考 3.2内容
messages =  context.copy()
messages.append({'role':'system', 'content':'''创建上一个食品订单的 json 摘要。\逐项列出每件商品的价格,字段应该是 1) 披萨,包括大小 2) 配料列表 3) 饮料列表,包括大小 4) 配菜列表包括大小 5) 总价你应该给我返回一个可解析的Json对象,包括上述字段'''},
)response = get_completion_from_messages(messages, temperature=0)
print(response)
{"披萨": {"大尺寸": 15.0,"小尺寸": 12.0},"配料": [{"名称": "切片奶酪","大小": "大尺寸"},{"名称": "番茄酱","大小": "小尺寸"}],"饮料": [{"名称": "可乐","大小": "大尺寸"},{"名称": "果汁","大小": "小尺寸"}],"配菜": [{"名称": "洋葱","大小": "大尺寸"},{"名称": "蘑菇","大小": "小尺寸"}],"总价": 42.0
}

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/383382.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue import from

vue import from 导入文件&#xff0c;从XXXX路径&#xff1b;引入文件 import xxxx from “./minins/resize” import xxxx from “./minins/resize.js” vue.config.js 定义 : resolve(src)&#xff1b;就是指src 目录 import xxxx from “/utils/auth” im…

新版GPT-4omini上线!快!真TM快!

大半夜&#xff0c;OpenAI突然推出了GPT-4o mini版本。 当我看到这条消息时&#xff0c;正准备去睡觉。mini版本质上是GPT-4o模型的精简版本&#xff0c;没有什么革命性的创新&#xff0c;因此我并没有太在意。 结果今天早上一觉醒来发现伴随GPT-4o mini上线&#xff0c;官网和…

RAS--APEI 报错解析流程(2)

RAS--APEI 报错解析流程(1) 除了APEI 中除了GHES会记录错误&#xff0c;在Post过程中的错误通常是通过BERT Table汇报 1.BERT Boot Error Record Table is used to report unhandled errors that occurred in a previous boot&#xff0c;it is reported as a ‘one-time polle…

stats 监控 macOS 系统

Stats 监控 macOS 系统 CPU 利用率GPU 利用率内存使用情况磁盘利用率网络使用情况电池电量 brew install stats参考 stats github

Ansible的脚本-----playbook剧本【上】

目录 1.playbook剧本组成 2.playbook剧本实战演练 2.1 实战演练一&#xff1a;给被管理主机安装httpd服务 2.2 实战演练二&#xff1a;定义、引用变量 2.3 实战演练三&#xff1a;指定远程主机sudo切换用户 2.4 实战演练四&#xff1a;when条件判断 2.5 实战演练五&…

ElasticSearch(六)— 全文检索

一、match系列查询 前面讲到的query中的查询&#xff0c;都是精准查询。可以理解成跟在关系型数据库中的查询类似。match系列的查询&#xff0c;是全文检索的查询。会通过分词进行评分&#xff0c;匹配&#xff0c;再返回搜索结果。 1.1 match 查询 "query": {&qu…

.Net Core 微服务之Consul(三)-KV存储分布式锁

引言: 集合上两期.Net Core 微服务之Consul(一)(.Net Core 微服务之Consul(一)-CSDN博客) 。.Net Core 微服务之Consul(二)-集群搭建)(.Net Core 微服务之Consul(二)-集群搭建-CSDN博客) 目录 一. Consul KV 存储 1. KV 存储介绍 1.1 数据模型 1.2 一致性和…

Centos安装、迁移gitlab

Centos安装迁移gitlab 一、下载安装二、配置rb修改&#xff0c;起服务。三、访问web&#xff0c;个人偏好设置。四、数据迁移1、查看当前GitLab版本2、备份旧服务器的文件3、将上述备份文件拷贝到新服务器同一目录下&#xff0c;恢复GitLab4、停止新gitlab数据连接服务5、恢复备…

Docker、containerd、CRI-O 和 runc 之间的区别

容器与 Docker 这个名称并不紧密相关。你可以使用其他工具来运行容器 您可以使用 Docker 或一堆非Docker 的其他工具来运行容器。docker只是众多选项之一&#xff0c;Docker&#xff08;公司&#xff09;在生态系统中创建了一些很棒的工具&#xff0c;但不是全部。 容器方面有…

47.简易电压表的设计与验证(2)

&#xff08;1&#xff09;Verilog 代码&#xff1a; module adc_collect(input clk ,input reset_n ,input [7:0] adc_data ,output clk_adc );wire clk_adc_a ;…

大文件分片上传(前端TS实现)

大文件分片上传 内容 一般情况下&#xff0c;前端上传文件就是new FormData,然后把文件 append 进去&#xff0c;然后post发送给后端就完事了&#xff0c;但是文件越大&#xff0c;上传的文件也就越长&#xff0c;如果在上传过程中&#xff0c;突然网络故障&#xff0c;又或者…

【Linux操作系统】:进程间通信

目录 进程间通信介绍 1、进程间通信的概念 2、进程间通信的目的 3、进程间通信的本质 4、进程间通信的分类 管道 匿名管道 匿名管道的原理 pipe函数 创建匿名管道 管道的四种情况和五种特性 命名管道 使用命令创建命名管道 创建一个命名管道 命名管道的打开规则 …

【ROS2】高级:安全-理解安全密钥库

目标&#xff1a;探索位于 ROS 2 安全密钥库中的文件。 教程级别&#xff1a;高级 时间&#xff1a;15 分钟 内容 背景安全工件位置 公钥材料 私钥材料域治理政策 安全飞地 参加测验&#xff01; 背景 在继续之前&#xff0c;请确保您已完成设置安全教程。 sros2 包可以用来创…

Qt自定义下拉列表-可为选项设置标题、可禁用选项

在Qt中,ComboBox&#xff08;组合框&#xff09;是一种常用的用户界面控件,它提供了一个下拉列表,允许用户从预定义的选项中选择一个。在项目开发中&#xff0c;如果简单的QComboBox无法满足需求&#xff0c;可以通过自定义QComboBox来实现更复杂的功能。本文介绍一个自定义的下…

Python研究生毕业设计,数据挖掘、情感分析、机器学习

最近在学校毕业了&#xff0c;其中有很多毕业论文使用到的代码&#xff0c;如数据挖掘、情感分析、机器学习、数据预测处理、划分数据集和测试集&#xff0c;绘制分类任务&#xff0c;词汇表示&#xff1a;使用TF-IDF向量化器&#xff0c;线性回归、多元线性回归、SVR回归模型&…

一文入门SpringSecurity 5

目录 提示 Apache Shiro和Spring Security 认证和授权 RBAC Demo 环境 Controller 引入Spring Security 初探Security原理 认证授权图示​编辑 图中涉及的类和接口 流程总结 提示 Spring Security源码的接口名和方法名都很长&#xff0c;看源码的时候要见名知意&am…

grafana对接zabbix数据展示

目录 1、初始化、安装grafana 2、浏览器访问 3、安装zabbix 4、zabbix数据对接grafana 5、如何导入模板&#xff1f; ① 设置键值 ② 在zabbix web端完成自定义监控项 ③ garafana里添加nginx上面的的三个监控项 6、如何自定义监控项&#xff1f; 以下实验沿用上一篇z…

二、原型模式

文章目录 1 基本介绍2 实现方式深浅拷贝目标2.1 使用 Object 的 clone() 方法2.1.1 代码2.1.2 特性2.1.3 实现深拷贝 2.2 在 clone() 方法中使用序列化2.2.1 代码 2.2.2 特性 3 实现的要点4 Spring 中的原型模式5 原型模式的类图及角色5.1 类图5.1.1 不限制语言5.1.2 在 Java 中…

免费【2024】springboot 趵突泉景区的智慧导游小程序

博主介绍&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术范围&#xff1a;SpringBoot、Vue、SSM、HTML、Jsp、PHP、Nodejs、Python、爬虫、数据可视化…

开发桌面程序-Electron入门

Electron是什么 来自官网的介绍 Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 嵌入 Chromium 和 Node.js 到 二进制的 Electron 允许您保持一个 JavaScript 代码代码库并创建 在Windows上运行的跨平台应用 macOS和Linux——不需要本地开发 经验。 总…