Matplotlib

一、Matplotlib快速入门

学习目标

  • 了解什么是matplotlib

  • 为什么要学习matplotlib

  • matplotlib简单图形的绘制

1、什么是Matplotlib

  • 是专门用于开发2D图表(包括3D图表)

  • 以渐进、交互式方式实现数据可视化

2、为什么要学习Matplotlib

可视化是在整个数据挖掘的关键辅助工具,可以清晰的理解数据,从而调整我们的分析方法。

  • 能将数据进行可视化,更直观的呈现

  • 使数据更加客观、更具说服力

例如下面两个图为数字展示和图形展示:

3、实现一个简单的Matplotlib画图 — 以折线图为例

3.1 matplotlib.pyplot模块

matplotlib.pytplot包含了一系列类似于matlab的画图函数。

import matplotlib.pyplot as plt

3.2 图形绘制流程:

  • 1.创建画布 -- plt.figure()

  • plt.figure(figsize=(), dpi=)figsize:指定图的长宽dpi:图像的清晰度返回fig对象

  • 2.绘制图像 -- plt.plot(x, y)

  • 以折线图为例

  • 3.显示图像 -- plt.show()

3.3 折线图绘制与显示

举例:展现上海一周的天气,比如从星期一到星期日的天气温度如下

import matplotlib.pyplot as plt
​
# 1.创建画布
plt.figure(figsize=(10, 10), dpi=100)
​
# 2.绘制折线图
plt.plot([1, 2, 3, 4, 5, 6 ,7], [17,17,18,15,11,11,13])
​
# 3.显示图像
plt.show()

 

4、认识Matplotlib图像结构(了解)

小结

  • 什么是matplotlib【了解】

    • 是专门用于开发2D(3D)图表的包

  • 绘制图像流程【掌握】

    • 1.创建画布 -- plt.figure(figsize=(20,8), dpi=100)

    • 2.绘制图像 -- plt.plot(x, y)

    • 3.显示图像 -- plt.show()

二、Matplotlib基础绘图功能

学习目标

  • 掌握给图形添加辅助功能(如:标注、x,y轴名称、标题等)

  • 知道图形的保存

  • 知道如何多次plot绘制图形

  • 知道如何多个坐标系显示图形

  • 知道折线图的应用场景

1、完善原始折线图 — 给图形添加辅助功能

为了更好地理解所有基础绘图功能,我们通过天气温度变化的绘图来融合所有的基础API使用

需求:画出某城市11点到12点1小时内每分钟的温度变化折线图,温度范围在15度~18度

效果:

1.1 准备数据并画出初始折线图

import matplotlib.pyplot as plt
import random
​
# 画出温度变化图
​
# 0.准备x, y坐标的数据
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
​
# 1.创建画布
plt.figure(figsize=(20, 8), dpi=80)
​
# 2.绘制折线图
plt.plot(x, y_shanghai)
​
# 3.显示图像
plt.show()

作用:返回一个 随机的浮点数,其值在区间 [a, b] 之间(包括 ab)。

分布:数值在指定区间内是 均匀分布 的,这意味着每个数值出现的概率是相等的。

1.2 添加自定义x,y刻度

  • plt.xticks(x, **kwargs)

    x:要显示的刻度值

  • plt.yticks(y, **kwargs)

    y:要显示的刻度值

# 增加以下两行代码
​
# 构造x轴刻度标签
x_ticks_label = ["11点{}分".format(i) for i in x]
# 构造y轴刻度
y_ticks = range(40)
​
# 修改x,y轴坐标的刻度显示
plt.xticks(x[::5], x_ticks_label[::5])
plt.yticks(y_ticks[::5])

如果没有解决过中文问题的话,会显示这个样子:

1.3 中文显示问题解决

解决方案一:

下载中文字体(黑体,看准系统版本)

  • 步骤一:下载 SimHei 字体(或者其他的支持中文显示的字体也行)

  • 步骤二:安装字体

    • linux下:拷贝字体到 usr/share/fonts 下:

      sudo cp ~/SimHei.ttf /usr/share/fonts/SimHei.ttf
    • windows和mac下:双击安装

  • 步骤三:删除~/.matplotlib中的缓存文件

    cd ~/.matplotlib
    rm -r *

  • 步骤四:修改配置文件matplotlibrc

    vi ~/.matplotlib/matplotlibrc

    将文件内容修改为:

    font.family         : sans-serif
    font.sans-serif         : SimHei
    axes.unicode_minus  : False

解决方案二:

在Python脚本中动态设置matplotlibrc,这样也可以避免由于更改配置文件而造成的麻烦,具体代码如下:

from pylab import mpl
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]

有时候,字体更改后,会导致坐标轴中的部分字符无法正常显示,此时需要更改axes.unicode_minus参数:

# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = False

1.4 添加网格显示

为了更加清楚地观察图形对应的值

plt.grid(True, linestyle='--', alpha=0.5)

1.5 添加描述信息

添加x轴、y轴描述信息及标题

通过fontsize参数可以修改图像中字体的大小

plt.xlabel("时间")
plt.ylabel("温度")
plt.title("中午11点0分到12点之间的温度变化图示", fontsize=20)

1.6 图片保存

# 保存图片到指定路径
plt.savefig("test.png")
  • 注意:plt.show()会释放figure资源,如果在显示图像之后保存图片将只能保存空图片。

1.7 完整代码

import matplotlib.pyplot as plt
import random
from pylab import mpl
​
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = False
​
# 0.准备数据
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
​
# 1.创建画布
plt.figure(figsize=(20, 8), dpi=100)
​
# 2.绘制图像
plt.plot(x, y_shanghai)
​
# 2.1 添加x,y轴刻度
# 构造x,y轴刻度标签
x_ticks_label = ["11点{}分".format(i) for i in x]
y_ticks = range(40)
​
# 刻度显示
plt.xticks(x[::5], x_ticks_label[::5])
plt.yticks(y_ticks[::5])
​
# 2.2 添加网格显示
plt.grid(True, linestyle="--", alpha=0.5)
​
# 2.3 添加描述信息
plt.xlabel("时间")
plt.ylabel("温度")
plt.title("中午11点--12点某城市温度变化图", fontsize=20)
​
# 2.4 图像保存
plt.savefig("./test.png")
​
# 3.图像显示
plt.show()

2、在一个坐标系中绘制多个图像

2.1 多次plot

需求:再添加一个城市的温度变化

收集到北京当天温度变化情况,温度在1度到3度。怎么去添加另一个在同一坐标系当中的不同图形,其实很简单只需要再次plot即可,但是需要区分线条,如下显示

# 增加北京的温度数据
y_beijing = [random.uniform(1, 3) for i in x]
​
# 绘制折线图
plt.plot(x, y_shanghai)
# 使用多次plot可以画多个折线
plt.plot(x, y_beijing, color='r', linestyle='--')

我们仔细观察,用到了两个新的地方,一个是对于不同的折线展示效果,一个是添加图例。

2.2 设置图形风格

颜色字符风格字符
r 红色- 实线
g 绿色- - 虚线
b 蓝色-. 点划线
w 白色: 点虚线
c 青色' ' 留空、空格
m 洋红
y 黄色
k 黑色

2.3 显示图例

  • 注意:如果只在plt.plot()中设置label还不能最终显示出图例,还需要通过plt.legend()将图例显示出来。

# 绘制折线图
plt.plot(x, y_shanghai, label="上海")
# 使用多次plot可以画多个折线
plt.plot(x, y_beijing, color='r', linestyle='--', label="北京")
​
# 显示图例
plt.legend(loc="best")
Location StringLocation Code
'best'0
'upper right'1
'upper left'2
'lower left'3
'lower right'4
'right'5
'center left'6
'center right'7
'lower center'8
'upper center'9
'center'10

2.4 完整代码

# 0.准备数据
x = range(60)
y_shanghai = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1,3) for i in x]
​
# 1.创建画布
plt.figure(figsize=(20, 8), dpi=100)
​
# 2.绘制图像
plt.plot(x, y_shanghai, label="上海")
plt.plot(x, y_beijing, color="r", linestyle="--", label="北京")
​
# 2.1 添加x,y轴刻度
# 构造x,y轴刻度标签
x_ticks_label = ["11点{}分".format(i) for i in x]
y_ticks = range(40)
​
# 刻度显示
plt.xticks(x[::5], x_ticks_label[::5])
plt.yticks(y_ticks[::5])
​
# 2.2 添加网格显示
plt.grid(True, linestyle="--", alpha=0.5)
​
# 2.3 添加描述信息
plt.xlabel("时间")
plt.ylabel("温度")
plt.title("中午11点--12点某城市温度变化图", fontsize=20)
​
# 2.4 图像保存
plt.savefig("./test.png")
​
# 2.5 添加图例
plt.legend(loc=0)
​
​
# 3.图像显示
plt.show()

3、多个坐标系显示— plt.subplots(面向对象的画图方法)

如果我们想要将上海和北京的天气图显示在同一个图的不同坐标系当中,效果如下:

可以通过subplots函数实现(旧的版本中有subplot,使用起来不方便),推荐subplots函数

  • matplotlib.pyplot.subplots(nrows=1, ncols=1, **fig_kw) 创建一个带有多个axes(坐标系/绘图区)的图

    Parameters:    
    ​
    nrows, ncols : 设置有几行几列坐标系int, optional, default: 1, Number of rows/columns of the subplot grid.
    ​
    Returns:    
    fig : 图对象
    axes : 返回相应数量的坐标系
    ​
    设置标题等方法不同:set_xticksset_yticksset_xlabelset_ylabel

    关于axes子坐标系的更多方法:参考matplotlib.axes — Matplotlib 3.10.1 documentation

  • 注意:plt.函数名()相当于面向过程的画图方法,axes.set_方法名()相当于面向对象的画图方法。

    
# 0.准备数据x = range(60)y_shanghai = [random.uniform(15, 18) for i in x]y_beijing = [random.uniform(1, 5) for i in x]
​# 1.创建画布# plt.figure(figsize=(20, 8), dpi=100)fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8), dpi=100)
​
​# 2.绘制图像# plt.plot(x, y_shanghai, label="上海")# plt.plot(x, y_beijing, color="r", linestyle="--", label="北京")axes[0].plot(x, y_shanghai, label="上海")axes[1].plot(x, y_beijing, color="r", linestyle="--", label="北京")
​# 2.1 添加x,y轴刻度# 构造x,y轴刻度标签x_ticks_label = ["11点{}分".format(i) for i in x]y_ticks = range(40)
​# 刻度显示# plt.xticks(x[::5], x_ticks_label[::5])# plt.yticks(y_ticks[::5])axes[0].set_xticks(x[::5])axes[0].set_yticks(y_ticks[::5])axes[0].set_xticklabels(x_ticks_label[::5])axes[1].set_xticks(x[::5])axes[1].set_yticks(y_ticks[::5])axes[1].set_xticklabels(x_ticks_label[::5])
​# 2.2 添加网格显示# plt.grid(True, linestyle="--", alpha=0.5)axes[0].grid(True, linestyle="--", alpha=0.5)axes[1].grid(True, linestyle="--", alpha=0.5)
​# 2.3 添加描述信息# plt.xlabel("时间")# plt.ylabel("温度")# plt.title("中午11点--12点某城市温度变化图", fontsize=20)axes[0].set_xlabel("时间")axes[0].set_ylabel("温度")axes[0].set_title("中午11点--12点某城市温度变化图", fontsize=20)axes[1].set_xlabel("时间")axes[1].set_ylabel("温度")axes[1].set_title("中午11点--12点某城市温度变化图", fontsize=20)
​# # 2.4 图像保存plt.savefig("./test.png")
​# # 2.5 添加图例# plt.legend(loc=0)axes[0].legend(loc=0)axes[1].legend(loc=0)
​
​# 3.图像显示plt.show()

4、折线图的应用场景

  • 呈现公司产品(不同区域)每天活跃用户数

  • 呈现app每天下载数量

  • 呈现产品新功能上线后,用户点击次数随时间的变化

  • 拓展:画各种数学函数图像

    • 注意:plt.plot()除了可以画折线图,也可以用于画各种数学函数图像

代码:

import numpy as np
# 0.准备数据
x = np.linspace(-10, 10, 1000)
y = np.sin(x)
​
# 1.创建画布
plt.figure(figsize=(20, 8), dpi=100)
​
# 2.绘制函数图像
plt.plot(x, y)
# 2.1 添加网格显示
plt.grid()
​
# 3.显示图像
plt.show()

三、常见图形绘制

1、官方案例库

Examples — Matplotlib 3.10.1 documentation

2、常见图形种类及意义

2.1 折线图

  • 折线图:以折线的上升或下降来表示统计数量的增减变化的统计图

    特点:能够显示数据的变化趋势,反映事物的变化情况。(变化)

    api:plt.plot(x, y)

2.2 柱形图

柱状图:排列在工作表的列或行中的数据可以绘制到柱状图中。

特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比)

api:plt.bar(x, width, align='center', **kwargs)

Parameters:    
x : 需要传递的数据
​
width : 柱状图的宽度
​
align : 每个柱状图的位置对齐方式{'center', 'edge'}, optional, default: 'center'
​
**kwargs :
color:选择柱状图的颜色

2.3 直方图

由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据范围,纵轴表示分布情况。

特点:绘制连续性的数据展示一组或者多组数据的分布状况(统计)

api:matplotlib.pyplot.hist(x, bins=None)

Parameters:    
x : 需要传递的数据
bins : 组距

2.4 饼图

  • 饼图:用于表示不同分类的占比情况,通过弧度大小来对比各种分类。

    特点:分类数据的占比情况(占比)

    api:plt.pie(x, labels=,autopct=,colors)

    Parameters:  
    x:数量,自动算百分比
    labels:每部分名称
    autopct:占比显示指定%1.2f%%
    colors:每部分颜色

2.5 散点图

散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。

特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)

api:plt.scatter(x, y)

3、柱形图绘制

categories = ['A', 'B', 'C', 'D']
values = [3, 7, 5, 4]
​
plt.bar(categories, values, color='blue')  # 绘制蓝色柱状图
plt.title("Simple Bar Chart")  # 设置图表标题
plt.xlabel("Categories")  # 设置X轴标签
plt.ylabel("Values")  # 设置Y轴标签
plt.show()  # 显示图表

4、直方图

# 1. 生成数据
data = np.random.randn(500)  # 生成500个服从标准正态分布的随机数
​
# 2. 创建画布
plt.figure(figsize=(10, 6))
​
# 3. 绘制直方图
plt.hist(data, bins=30, color='blue', alpha=0.7, rwidth=0.85)
​
# 4. 添加标题和标签
plt.title("Histogram of Normally Distributed Data")
plt.xlabel("Value")
plt.ylabel("Frequency")
​
# 5. 显示图像
plt.grid(True)
plt.show()
​
参数说明
bins=30:将数据分成 30 个等宽的区间,每个区间的宽度相同,统计每个区间内数据的频率。
color='blue':设置直方图条形为蓝色。
alpha=0.7:设置条形的透明度为 0.7,使得条形稍微透明。
rwidth=0.85:将条形的宽度设为区间宽度的 85%,留下 15% 的间隔,以便更清晰地分辨各个条形。

5、饼图

sizes = [25, 35, 25, 15]
labels = ['Category A', 'Category B', 'Category C', 'Category D']
​
plt.pie(sizes, labels=labels, autopct='%1.1f%%')  # 绘制饼图,显示百分比
plt.title("Simple Pie Chart")  # 设置图表标题
plt.show()  # 显示图表

6、散点图绘制

x = [1, 2, 3, 4, 5]
y = [2, 3, 5, 7, 11]
​
plt.scatter(x, y, color='red')  # 绘制红色散点图
plt.title("Simple Scatter Plot")  # 设置图表标题
plt.xlabel("X-axis")  # 设置X轴标签
plt.ylabel("Y-axis")  # 设置Y轴标签
plt.show()  # 显示图表

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/38403.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【leetcode hot 100 131】分割回文串

解法一:回溯法动态规划法 回溯法: 假设我们当前搜索到字符串的第 i 个字符,且 s[0…i−1] 位置的所有字符已经被分割成若干个回文串,并且分割结果被放入了答案数组 ans 中,那么我们就需要枚举下一个回文串的右边界 j…

ToDesk云电脑各类鼠标有什么区别?虚拟/3D/游戏鼠标等各有利

不知道各位在使用ToDesk云电脑的时候是否是有注意到,这其中的鼠标竟有多种名称、多种模式可以选,比如锁定鼠标、3D鼠标、游戏鼠标这几项。 那么这些不同名称的鼠标都代表什么意思呐,又应该怎么选择、怎么用呐?本篇内容小编就为大…

手机怎么换网络IP有什么用?操作指南与场景应用‌

在数字化时代,手机已经成为我们日常生活中不可或缺的一部分,无论是工作、学习还是娱乐,手机都扮演着至关重要的角色。而在手机的使用过程中,网络IP地址作为设备在互联网上的唯一标识符,其重要性和作用不容忽视。本文将…

Bulk Rename Utility(BRU)——大批量重命名实用程序

Bulk Rename Utility(BRU)——大批量重命名实用程序 博主要给博客网站搞博客封面,几百张图没编号,一弄这个就好了,亲测十分好用,下面的b站教程更是一绝,快快使用起来 文章目录 Bulk Rename Ut…

鸿蒙生态开发

鸿蒙生态开发概述 鸿蒙生态是华为基于开源鸿蒙(OpenHarmony)构建的分布式操作系统生态,旨在通过开放共享的模式连接智能终端设备、操作系统和应用服务,覆盖消费电子、工业物联网、智能家居等多个领域。以下从定义与架构、核心技术…

Matlab概率区间预测全家桶更新了,新增光伏出力区间预测,4种分布可供预测

基本介绍 适用于matlab2020及以上。可任意选择置信区间,区间覆盖率picp、区间平均宽度百分比等等,可用于预测不确定性,效果如图所示,采用KDE,4种分布进行预测,有对比,可以替换成自己的数据。 …

C语言【文件操作】详解中(会使用fgetc,fputc,fgets,fputs,fscanf,fprintf,fread,fwrite函数)

引言 介绍和文件操作中文件的顺序读写相关的函数 看这篇博文前,希望您先仔细看一下这篇博文,理解一下文件指针和流的概念:C语言【文件操作】详解上-CSDN博客文章浏览阅读606次,点赞26次,收藏4次。先整体认识一下文件是…

深入剖析Java虚拟机(JVM):从零开始掌握Java核心引擎

📌 引言:为什么每个Java开发者都要懂JVM? 想象你是一名赛车手,Java是你的赛车,而JVM就是赛车的引擎。 虽然你可以不关心引擎内部构造就能开车,但要想在比赛中获胜,必须了解引擎如何工作&#…

鸿蒙harmonyOS笔记:练习CheckBoxGroup获取选中的值

除了视觉效果实现全选和反选以外,咱们经常需要获取选中的值,接下来看看如何实现。 核心步骤: 1. 给 CheckBoxGroup 注册 onChange。 2. CheckBox 添加 name 属性。 3. 在 onChange 的回调函数中获取 选中的 name 属性。 事件&#xff1a…

通俗易懂搞懂@RequestParam 和 @RequestBody

📌 博主简介: 💻 努力学习的 23 级科班生一枚 🚀🏠 博主主页 : 📎 灰阳阳📚 往期回顾 :Session和Cookie我不允许你不懂💬 每日一言: 「流水不争先&#xff0c…

Flink 内存管理

一、内存模型 上图是一个 Flink 程序进程总体的内存模型,其包含 Flink 使用内存、JVM 元空间以及 JVM 开销。 Flink 使用了堆上内存和堆外内存;框架内存使用了堆上内存和堆外内存的直接内存;Task 使用堆上内存和堆外内存的直接内存;管理内存、JVM 元空间以及 JVM 内存开销使…

【工具变量】中国各地级市是否属于“信息惠民国家试点城市”匹配数据(2010-2024年)

数据来源:国家等12部门联合发布的《关于加快实施信息惠民工程有关工作的通知》 数据说明:内含原始文件和匹配结果,当试点城市在2014年及以后,赋值为1;试点城市在2014年之前或该城市从未实施信息惠民试点工程&#x…

git的底层原理

git的底层原理 三段话总结git, 1. 工作原理:git管理是一个DAG有向无环图,HEAD指针指向branch或直接指向commit,branch指向commit,commit指向tree,tree指向别的tree或直接指向blob。 2. git所管理的一个目录…

安装React开发者工具

我们在说组件之前,需要先安装一下React官方推出的开发者工具,首先我们分享在线安装方式 首先打开谷歌网上应用商店(针对谷歌浏览器),在输入框内搜索react,安装如下插件: 注意安装提供方为Facebook的插件,这…

排列与二进制

#include<iostream> using namespace std; int count_two(int n,int m){int count0;for(int i0;i<m;i){ //统计2的因子个数 int numn-i;while(num%20){count;num /2;}}return count; } int main(){int n,m;while(1){cin >> n >> m;if(n0 && m0)br…

鱼书--学习2

6. 与学习相关的技巧 6.1 参数的更新 &#xff08;1&#xff09; SGD的缺点&#xff1a;SGD低效的根本原因是&#xff0c;梯度的方向并没有指向最小值的方向 基于SGD的最优化的更新路径&#xff1a;呈“之”字形朝最小值(0, 0)移动&#xff0c;效率低 &#xff08;2&#x…

基于SSM框架的汽车租赁平台(源码+lw+部署文档+讲解),源码可白嫖!

摘要 时代在飞速进步&#xff0c;每个行业都在努力发展现在先进技术&#xff0c;通过这些先进的技术来提高自己的水平和优势&#xff0c;汽车租赁平台当然不能排除在外。汽车租赁平台是在实际应用和软件工程的开发原理之上&#xff0c;运用Java语言以及SSM框架进行开发&#x…

LangChain Chat Model学习笔记

Prompt templates: Few shot、Example selector 一、Few shot(少量示例) 创建少量示例的格式化程序 创建一个简单的提示模板&#xff0c;用于在生成时向模型提供示例输入和输出。向LLM提供少量这样的示例被称为少量示例&#xff0c;这是一种简单但强大的指导生成的方式&…

新配置了一台服务器+域名共178:整个安装步骤,恢复服务

买了一台服务器域名eesou.com&#xff1a; 服务器选的是99元最低配的&#xff0c;用免费的镜像&#xff1a;宝塔面板 eesou.com是一口价买的 79&#xff0c;原来wjsou.com卖了。 原来的配置全丢了。开始重新安装步骤。 域名备案才能用&#xff0c;提交就等着了 服务器配置 …

Netty——BIO、NIO 与 Netty

文章目录 1. 介绍1.1 BIO1.1.1 概念1.1.2 工作原理1.1.3 优缺点 1.2 NIO1.2.1 概念1.2.2 工作原理1.2.3 优缺点 1.3 Netty1.3.1 概念1.3.2 工作原理1.3.3 优点 2. Netty 与 Java NIO 的区别2.1 抽象层次2.2 API 易用性2.3 性能优化2.4 功能扩展性2.5 线程模型2.6 适用场景 3. 总…