基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 粒子群优化算法(PSO)

4.2 分组卷积神经网络(GroupCNN)

4.3 PSO优化GroupCNN

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

.......................................................LR             = g1(1);numHiddenUnits1 = floor(g1(2))+1;% 
numHiddenUnits2 = floor(g1(3))+1;% layers = func_model2(Dim,numHiddenUnits1,numHiddenUnits2);opts = trainingOptions('adam', ...         % Adam'MaxEpochs', 1000, ...                 % 训练次数 1000'InitialLearnRate', LR, ...          % 学习率LR'LearnRateSchedule', 'piecewise', ...  'LearnRateDropFactor', 0.1, ...        'LearnRateDropPeriod', 500, ...        'Shuffle', 'every-epoch', ...          'Plots', 'training-progress', ... 'Verbose', false);%训练模型
%训练模型
[GCNN_net, INFO] = trainNetwork(Dat_train, Lab_train, layers, opts);Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;%预测
ypred2 = predict(GCNN_net, Dat_test );figure
plot(Lab_test, 'r')
hold on
plot(ypred2, 'b-o')
legend('真实值', '预测值')
grid onfigure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid onsubplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid onsave R2.mat Rerr Rlos ypred2 Lab_test
165

4.算法理论概述

       基于粒子群优化(Particle Swarm Optimization, PSO)的GroupCNN分组卷积网络时间序列预测算法是一种结合了粒子群优化技术和分组卷积神经网络(GroupCNN)的时间序列预测方法。这种方法利用粒子群优化来寻找最优的网络结构和超参数,以提高时间序列预测的准确性和效率。

4.1 粒子群优化算法(PSO)

       粒子群优化算法是一种启发式的优化算法,模拟了鸟群觅食的行为。每个粒子代表搜索空间中的一个潜在解,通过粒子之间的协作来寻找最优解。

4.2 分组卷积神经网络(GroupCNN)

       分组卷积是一种减少计算成本同时保持模型性能的有效手段。在深度学习领域,尤其是在卷积神经网络(CNN)中,分组卷积被用来降低参数数量和计算复杂度。假设输入张量为X,卷积核为W,输出张量为Y,则分组卷积的计算可以表示为:

常规卷积和分组卷积,其区别如下图所示:

4.3 PSO优化GroupCNN

      在基于PSO的GroupCNN中,我们使用PSO来调整网络的结构参数,比如卷积核大小、分组数量等,以及超参数,如学习率、批量大小等。具体步骤如下:

  1. 初始化粒子群:每个粒子代表一个可能的网络配置。
  2. 评估粒子:使用交叉验证或其他评估指标来评估每个粒子所对应的网络配置。
  3. 更新粒子状态:根据粒子群优化算法更新每个粒子的位置和速度。
  4. 终止条件:达到预设的最大迭代次数或满足收敛条件则停止。

        基于PSO的GroupCNN时间序列预测算法通过结合粒子群优化技术和分组卷积神经网络,实现了对时间序列预测问题的有效解决。通过PSO算法智能地调整网络结构和超参数,可以显著提高预测的准确性和模型的效率。这种方法特别适用于那些需要快速、准确预测的场景,如金融市场预测、天气预报等。通过合理的参数设置和模型设计,可以进一步提高预测性能,满足实际应用的需求。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/384045.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql注意事项(一)

Mysql注意事项(一) 最近回顾了一下MySQL,发现了一些MySQL需要注意的事项,同时也作为学习笔记,记录下来。–2020年05月13日 1、通配符* 检索所有的列。 不建议使用 通常,除非你确定需要表中的每个列&am…

vue3前端开发-小兔鲜项目-form表单的统一校验

vue3前端开发-小兔鲜项目-form表单的统一校验!实际上,为了安全起见,用户输入的表单信息,要满足我们的业务需求,参数类型等种种标准之后,才会允许用户向服务器发送登录请求。为此,有必要进行一次…

重拾CSS,前端样式精读-函数(颜色,计算,图像和图形)

前言 本文收录于CSS系列文章中,欢迎阅读指正 在计算机编程中,函数有着重要的作用和意义,它可以实现封装,复用,模块化,参数等功能效果,在如何在CSS中写变量?一文带你了解前端样式利…

sql注入的专项练习 sqlilabs(含代码审计)

在做题之前先复习了数据库的增删改查,然后自己用本地的环境,在自己建的库里面进行了sql语句的测试,主要是回顾了一下sql注入联合注入查询的语句和sql注入的一般做题步骤。 1.获取当前数据库 2.获取数据库中的表 3.获取表中的字段名 一、sql…

Python升级打怪—Django入门

目录 一、Django简介 二、安装Django 三、创建Dajngo项目 (一) 创建项目 (二) 项目结构介绍 (三) 运行项目 (四) 结果 一、Django简介 Django是一个高级Python web框架,鼓励快速开发和干净、实用的设计。由经验丰富的开发人员构建,它解决了web开…

学习笔记-系统框图简化求传递函数公式例题

简化系统结构图求系统传递函数例题 基础知识回顾 第四讲 控制系统的方框图 (zhihu.com) 「自控原理」2.3 方框图的绘制及化简_方框图化简-CSDN博客 自动控制原理笔记-结构图及其等效变换_结构图等效变换-CSDN博客 例子一 「自控原理」2.3 方框图的绘制及化简_方框图化简-CS…

PYTHON学习笔记(八、字符串及的使用)

目录 1、字符串 1.1、字符串的常用操作 1.2、格式化字符串 1.2.1、占位符格式化字符串 1.2.2、f-string格式化字符串 1.2.3、str.format( )格式化字符串 1.3、数据的验证 1.4、正则表达式 1.5.1元字符 1.5.2限定符 1.5.3其他字符 1.5.4re模块 1、字符串 1.1、字符…

文件解析的终极工具:Apache Tika

文件解析的终极工具:Apache Tika Apache Tika 简介 Apache Tika 是一个开源的、跨平台的库,用于检测、提取和解析各种类型文件的元数据。 它支持多种文件格式,包括文档、图片、音频和视频。 Tika是一个底层库,经常用于搜索引擎…

Python | Leetcode Python题解之第279题完全平方数

题目: 题解: class Solution { public:// 判断是否为完全平方数bool isPerfectSquare(int x) {int y sqrt(x);return y * y x;}// 判断是否能表示为 4^k*(8m7)bool checkAnswer4(int x) {while (x % 4 0) {x / 4;}return x % 8 7;}int numSquares(i…

【Linux】基本指令1

文章目录 1. find2. which3. alias4.whereis5.grep6. sort 、uniq7. linux怎么编辑文件中的内容 1. find 1.1 find: 查找文件所在的位置。(当我们进行find搜索的时候,可能需要访问磁盘进而导致效率低下。) 1.2 find / file.txt 在Linux系统是…

室内消防逃生通道占用检测AI算法:科技筑防,守护生命通道

随着城市化进程的加快,高层建筑和大型公共场所的数量急剧增加,消防安全问题愈发凸显。其中,室内消防逃生通道的畅通性直接关系到火灾发生时人员的安全疏散。然而,由于各种原因,如杂物堆放、车辆停放等,消防…

使用nginx解决本地环境访问线上接口跨域问题

前言 前端项目开发过程中,经常会遇到各种各样的跨域问题。 虽然大部分时候,由脚手架自带的proxy功能即可解决问题,如webpack,vite等;但是若没有通过脚手架搭建项目,或者必须使用某些特殊规则转发时&#…

== 与 equals 的区别

概念 它的作用是判断两个对象的地址是不是相等,判断两个对象是不是同一个对象基本数据类型比较的是值是否相等引用数据类型比较的是内存地址是否相等 equals() 概念 它的作用也是判断两个对象是否相等。但它一般有两种使用情况:情况1:类没有…

Typora笔记上传到CSDN

1.Typora 安装 Typora链接:百度网盘 提取码:b6d1 旧版本是不需要破解的 后来的版本比如1.5.9把放在typora的根目录下就可以了 2.上传到CSDN 步骤 csdn 写文章-使用MD编辑器-导入本地md文件即可 问题 图片没法显示 原因 图片的链接是本地的 当然没法…

洛谷 P9854 [CCC 2008 J1] Body Mass Index

这题让我们计算出 BMI 值,随后判断属于哪个等级。 BMI 值计算公式: ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​。 BMI 范围 对应信息 …

C++ | Leetcode C++题解之第279题完全平方数

题目: 题解: class Solution { public:// 判断是否为完全平方数bool isPerfectSquare(int x) {int y sqrt(x);return y * y x;}// 判断是否能表示为 4^k*(8m7)bool checkAnswer4(int x) {while (x % 4 0) {x / 4;}return x % 8 7;}int numSquares(i…

PDF解锁网站

https://smallpdf.com/cn/unlock-pdfhttps://smallpdf.com/cn/unlock-pdfhttps://www.freemypdf.comhttps://www.freemypdf.com

hadoop完全分布模式搭建

本次搭建是基于伪分布式进行的,所以配置之前需要搭建好伪分布式 我使用的ubuntu版本见下 虚拟机之前安装过在此不在记录 伪分布式的搭建过程在之前的第一次实验报告上有详细的记录 修改主机名 设置 hosts 文件 ssh 无密码登录 过程不再演示 免密登录成功图 …

基于联咏 NT98692芯片赋能边缘计算IP摄像机与XVR监控系统解决方案

联咏 NT98692 是一款新世代整合度极高的 SoC,具有高影像品质、低位元率、低功耗,针对 8Kp30 边缘运算 IP 摄影机与后端监控系统 XVR 应用。此 SoC 整合了 ARM Quad Cortex A73 CPU 核心、新一代 ISP 和 AI ISP、H.265/H.264 视讯压缩编解码器、DSP、高效…

【微信小程序实战教程】之微信小程序原生开发详解

微信小程序原生开发详解 微信小程序的更新迭代非常频繁,几乎每个月都会有新版本发布,这就会让初学者感觉到学习的压力和难度。其实,我们小程序的每次版本迭代都是在现有小程序架构基础之上进行更新的,如果想要学好小程序开发技术&…