ChatGPT的原理和成本

ChatGPT就是人机交互的一个底层系统,某种程度上可以类比于操作系统。在这个操作系统上,人与AI之间的交互用的是人的语言,不再是冷冰冰的机器语言,或者高级机器语言,当然,在未来的十来年内,机器语言的使用率仍然会比较高,以便系统更迭和交互。

1. 作为人机交互“操作系统”,ChatGPT的大模型是如何输入、学习和更新数据的呢?

ChatGPT的大模型使用的是无监督学习方法,输入数据主要是通过爬虫技术从互联网上采集大量文本数据,数据来源包括维基百科、新闻报道、社交媒体等。这些文本数据经过预处理和清洗后,被转化为文本语料库。

ChatGPT的大模型通过对这些语料库进行无监督学习,学到了自然语言的语法结构和语义表示,因此它能够高度准确和流畅地生成文本。同时,ChatGPT的大模型也可以根据用户输入的上下文信息,自动生成相关的响应文本,从而实现对话交互的功能。ChatGPT作为一种强大的语言模型,为各种人工智能应用提供了基础支持。类似于操作系统为计算机提供了运行程序和管理资源的能力,ChatGPT为开发人员和用户提供了一种强大的自然语言处理工具。
在这里插入图片描述
在大语言模型的基础上出现了多种生成模型,这有点类似于操作系统中的各种管理功能:进程管理、内存管理、文件系统、设备管理、人机交互和网络管理等。在此类功能之上,则是各种应用,AI应用就建立在内容生成功能层之上,类似于PC端/移动端应用和服务应用。
在这里插入图片描述

2. ChatGPT为什么能生成代码,背后的原理是什么?

大模型学习编程的方式与其学习其他知识的方式相同,都是通过大量的文本数据来学习。这些文本数据包括各种类型的文本,如新闻、书籍、网页和编程教程等。模型可以从中学习到编程的基本概念、语法规则、常见模式和最佳实践等。

我们可以输入一些与编程语言相关的提示和约束条件,使ChatGPT生成符合这些提示和条件的代码。例如,输入一段关于计算圆面积的描述,可以提示ChatGPT生成对应的Python代码。此外,ChatGPT也可以通过学习大量的开源代码库,习得代码的结构和语法规则,从而生成符合编程规范的代码。

具体来说,模型的训练过程通常包括以下步骤。

  • 预训练:在这个阶段,模型会在大量的文本数据上进行训练,学习到文本的统计规律。这个过程是无监督的,也就是说,模型只需要预测下一个词是什么,而不根据需要明确的标签来进行学习。在这个步骤,模型可以学习到语言的语法和语义,以及一些基本的编程知识。
  • 微调:在预训练之后,模型会在特定的任务上进行微调。这个过程是有监督的,也就是说,模型需要根据明确的标签来进行学习。例如,如果我们想让模型学习编程,我们可以在编程问题和对应的解决方案上进行微调。通过这个过程,模型可以学习到更具体和深入的编程知识。

值得注意的是,虽然大模型可以学习到一些编程知识,但它们并不能理解编程的真正含义。它们只是学习到了编程的表面规律,而没有深入地理解编程。同时,ChatGPT生成的代码并不一定总是符合正确的语义和逻辑,还需要程序员对其进行进一步的检查和调试。因此,虽然大模型可以帮助我们解决一些编程问题,但它们不能替代真正的程序员。

3. ChatGPT日均算力运营成本的推算

微软的NewBing称,ChatGPT的单次训练成本约为170万美元,若自建AI算力中心进行模型训练,训练成本有望降至约51万美元。使用云计算时,ChatGPT每处理1000个token的信息,需花费约0.177美分,自建AI算力中心有望将成本降至0.053美分左右。

而ChatGPT称,计算ChatGPT的成本需要考虑如下多个因素,包括硬件、人力和能源成本等。

  • 硬件成本:ChatGPT使用的硬件是图形处理器(GPU),具体的成本取决于所使用的GPU型号、数量及供应商。以2023年4月的GPU价格为例,英伟达Tesla V100的售价约为10000美元。如果需要使用多个GPU来训练模型,则成本将进一步增加。
  • 人力成本:ChatGPT的开发需要大量的人力资源,包括算法研究员、工程师、开发者和数据科学家等。这些人员的工资和福利成本会对ChatGPT的总成本产生重大影响。
  • 能源成本:训练ChatGPT需要消耗大量的电力,需要考虑电费等能源成本。

根据OpenAI公司公布的消息,仅仅训练一个先进的GPT-3模型,就花费了数百万美元。除了硬件、人力和能源成本,还需要考虑到其他因素,例如数据采集、存储和管理成本等。

综合考虑,先搁置人力成本因素,只考虑硬件(TPU/存储器)成本和能源成本,核算起来会较清晰。这些因素都会对整个训练过程的费用产生影响,需要在预算和资源规划时予以充分考虑。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/384216.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iPhone 17系列取消17 Plus版本?新一代苹果手机迎来新变革

随着科技的飞速发展,苹果公司再次准备刷新我们的期待,即将推出的iPhone 17系列携带着一系列令人兴奋的升级。今年,苹果打破了常规,将四款新机型带入市场——iPhone 17、17 Pro、17 Pro Max,以及一款全新的成员&#xf…

Hadoop、HDFS、MapReduce 大数据解决方案

本心、输入输出、结果 文章目录 Hadoop、HDFS、MapReduce 大数据解决方案前言HadoopHadoop 主要组件的Web UI端口和一些基本信息MapReduceMapReduce的核心思想MapReduce的工作流程MapReduce的优缺点Hadoop、HDFS、MapReduce 大数据解决方案 编辑 | 简简单单 Online zuozuo 地址…

GPT-4O 的实时语音对话功能在处理多语言客户时有哪些优势?

最强AI视频生成:小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频百万播放量 我瞄了一眼OpenAI春季发布会,这个发布会只有26分钟,你可以说它是一部科幻短片,也可以说它过于“夸夸其谈”!关于…

Python文献调研(二)pycharm汉化与pyside6环境配置

一、pycharm汉化 1、点击File-settings (如果是苹果电脑,打开左上角Pycharm-Preferences) 2、点击plugins,在红框处输入Chinese后点击右侧的Marketplace,点击之后选中名为chinese(Simplifiled&#xff0…

matplotlib 画图函数,最常用的

并排显示2个图片 import os import numpy as np from PIL import Image import matplotlib.pyplot as pltimage1 Image.open(a.png) image2 Image.open(a2.png)# Create a figure with two subplots (1 row, 2 columns) fig, axes plt.subplots(1, 2, figsize(10, 5))# Di…

友思特应用 | 硅片上的光影贴合:UV-LED曝光系统在晶圆边缘曝光中的高效应用

导读 晶圆边缘曝光是帮助减少晶圆涂布过程中多余的光刻胶对电子器件影响的重要步骤。友思特 ALE/1 和 ALE/3 UV-LED 高性能点光源,作为唯一可用于宽带晶圆边缘曝光的 i、h 和 g 线的 LED 解决方案,可高效实现WEE系统设计和曝光需求。 晶圆边缘曝光及处…

Android 15 之如何快速适配 16K Page Size

在此之前,我们通过 《Android 15 上 16K Page Size 为什么是最坑》 介绍了: 什么是16K Page Size为什么它对于 Android 很坑如何测试 如果你还没了解,建议先去了解下前文,然后本篇主要是提供适配的思路,因为这类适配…

0724,select +tcp 聊天室喵

目录 TCP协议喵 723__01:使用select实现一个基于UDP的一对一即时聊天程序。 001: 002: TIMEWAI OR BUG 721作业: 01:在一对一聊天的基础上,使用select实现一对多的回显服务。(回显服务即接收到客户端发送的数…

懒人精灵安卓版纯本地离线文字识别插件

目的 懒人精灵是一款可以模拟鼠标和键盘操作的自动化工具。它可以帮助用户自动完成一些重复的、繁琐的任务,节省大量人工操作的时间。懒人精灵也包含图色功能,识别屏幕上的图像,根据图像的变化自动执行相应的操作。本篇文章主要讲解下更优秀的…

【屏显MCU】多媒体接口总结

本文主要介绍【屏显MCU】的基本概念,用于开发过程中的理解 以下是图层叠加示例 【屏显MCU】多媒体接口总结 0. 个人简介 && 授权须知1. 三大引擎1.1 【显示引擎】Display Engine1.1.1 【UI】 图层的概念1.1.2 【Video】 图层的概念1.1.3 图层的 Blending 的…

JAVA笔记十七

十七、File-IO流 1.I/O的概念和java.io包 (1)输入:外部源—>程序 输出:程序—>输出目标 外部源、输出目标:磁盘文件、网络连接、内存缓存等 (2)java程序通过流执行I/O 流是一种抽象,可以用来产生信息或者使用信息&#…

jenkins自动化持续集成

一、持续集成优势 1.1 解放重复劳动 一次设置,多次复用。持续集成任务可以解放集成、测试、部署等重复性劳动,通过自动化任务能够显著提升集成频率。 1.2 更快解决问题 接入持续集成任务后,能够更早地感知变更后效果,及时进入…

【OpenCV C++20 学习笔记】基本图像容器——Mat

【OpenCV C20 学习笔记】基本图像容器——Mat 概述Mat内部结构引用计数机制颜色数据格式 显式创建Mat对象使用cv::Mat::Mat构造函数矩阵的数据项 使用数组进行初始化的构造函数cv::Mat::create函数MATLAB风格的初始化小型矩阵通过复制创建Mat对象 Mat对象的输出其他普通数据项的…

在图神经网络(GNN)上进行关系推理的新架构

开发能够学习推理的模型是一个众所周知的具有挑战性的问题,在这个领域中,使用图神经网络(GNNs)似乎是一个自然的选择。然而,以往关于使用GNNs进行推理的工作表明,当这些模型面对需要比训练时更长推理链的测…

某数据泄露防护(DLP)系统NoticeAjax接口SQL注入漏洞复现 [附POC]

文章目录 某数据泄露防护(DLP)系统NoticeAjax接口SQL注入漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现某数据泄露防护(DLP)系统NoticeAjax接口SQL注入漏洞复现 [附POC] 0x01 前言 免责声明:请勿利用文章内…

SpringBoot 项目配置文件注释乱码的问题解决方案

一、问题描述 在项目的配置文件中,我们写了一些注释,如下所示: 但是再次打开注释会变成乱码,如下所示: 那么如何解决呢? 二、解决方案 1. 点击” File→Setting" 2. 搜索“File Encodings”, 将框…

DDoS 究竟在攻击什么?

分布式拒绝服务(DDoS)攻击是一种常见的网络攻击形式,攻击者通过向目标服务端发送大量的请求,使目标服务端无法进行网络连接,无法正常提供服务。 DDoS 攻击通常是由大量的分布在全球各地的 “僵尸” 计算机&#xff08…

力扣高频SQL 50题(基础版)第七题

文章目录 力扣高频SQL 50题(基础版)第七题1068. 产品销售分析 I题目说明思路分析实现过程准备数据:实现方式:结果截图:总结: 力扣高频SQL 50题(基础版)第七题 1068. 产品销售分析 I 题目说明 …

Android adb shell ps进程查找以及kill

Android adb shell ps进程查找以及kill 列出当前Android手机上运行的所有进程信息如PID等: adb shell ps 但是这样会列出一大堆进程信息,不便于定向查阅,可以使用关键词查找: adb shell "ps | grep 关键词" 关键词查…

Mysql中如何实现两列的值互换?给你提供些思路。

文章目录 Mysql中如何实现两列的值互换1、第一感觉此sql应该能处理问题了2、需要一个地方存要替换的值,不然两列搞不定。2.1 加第三列?(能解决,但是看起来呆呆)2.2 上临时表(搞点弯路走走) 示例…