嵌入式C++、STM32、MySQL、GPS、InfluxDB和MQTT协议数据可视化:智能物流管理系统设计思路流程(附代码示例)

目录

项目概述

系统设计

硬件设计

软件设计

系统架构图

代码实现

1. STM32微控制器与传感器代码

代码讲解

2. MQTT Broker设置

3. 数据接收与处理

代码讲解

4. 数据存储与分析

5. 数据分析与可视化

代码讲解

6. 数据可视化

项目总结


项目概述

随着电子商务的快速发展,物流管理面临着复杂的挑战。智能物流管理系统旨在通过实时监控和数据分析,优化物流过程,提高效率,降低成本。为了实现这一目标,我们需要综合运用多个技术栈来处理数据的采集、传输、存储和分析。

本文将介绍实现智能物流管理系统所需的主要技术栈,包括嵌入式系统、通信协议、云平台、数据存储与分析、数据可视化、后端服务、安全机制以及运维监控。

系统设计

硬件设计

  1. 嵌入式系统与传感器技术

    • STM32微控制器:用于监控货物的实时位置、温度、湿度等。STM32微控制器将连接各种传感器。
    • 传感器
      • GPS模块:用于获取实时位置。
      • 温湿度传感器:用于采集环境数据。

软件设计

  1. 通信协议

    • MQTT协议:用于低带宽、低功耗的数据传输。使用MQTT Broker(如Eclipse Mosquitto)处理来自设备的数据发布和订阅。
  2. 数据传输与网络

    • 无线通信模块:如GSM/GPRS模块、LoRa、Wi-Fi、NB-IoT等,用于将数据从STM32传输到云端。
    • SIM卡和数据网络:如果使用蜂窝网络,设备需要SIM卡连接到GSM/GPRS网络。
  3. 云平台

    • IoT平台:如AWS IoT、Azure IoT Hub、Google Cloud IoT,用于管理和处理从设备传输的数据。
    • 消息队列:如Apache Kafka,用于高吞吐量的数据流处理。
  4. 数据存储

    • 时序数据库:如InfluxDB,用于存储时间序列数据(如温度、湿度、位置等)。
    • 关系型数据库:如MySQL、PostgreSQL,用于存储物流管理相关信息。
    • 分布式文件系统:如HDFS,用于存储大规模数据。
  5. 大数据分析

    • 数据处理框架:如Apache Spark,用于大规模数据处理和分析。
    • 机器学习平台:如TensorFlow、Scikit-learn,用于路径优化和预测分析。
  6. 数据可视化

    • 可视化工具:如Grafana、Tableau,用于展示实时数据和分析结果。
    • Web前端框架:如React、Angular,用于构建用户界面。
  7. 后端服务

    • 服务器框架:如Node.js、Spring Boot,用于构建后端服务,处理数据请求和响应。
    • API网关:如Kong、AWS API Gateway,用于管理API请求。
  8. 安全

    • 加密:如TLS/SSL,用于保护数据传输的安全性。
    • 认证与授权:如OAuth2,用于用户认证和权限管理。
  9. 运维与监控

    • 容器化:如Docker,用于部署和管理应用。
    • 编排工具:如Kubernetes,用于管理容器化应用的自动部署、扩展和管理。
    • 监控工具:如Prometheus、ELK Stack(Elasticsearch、Logstash、Kibana),用于系统监控和日志管理。

系统架构图

 

代码实现

在本节中,我们将展示如何使用STM32微控制器和MQTT协议来实现智能物流管理系统的数据采集与传输。我们将分块展示代码并提供详细注释,以便读者理解每个部分的功能。

1. STM32微控制器与传感器代码

我们首先需要设置STM32微控制器,读取传感器数据,并将数据通过MQTT发送到云端。以下是示例代码:

#include "stm32f4xx_hal.h"
#include "mqtt.h" // 需要包含MQTT库
#include "gps.h"  // 需要包含GPS库
#include "dht11.h" // 需要包含温湿度传感器库// 定义MQTT主题
#define MQTT_TOPIC "logistics/data"// MQTT客户端实例
MQTTClient client;// 初始化传感器
void Sensor_Init() {DHT11_Init(); // 初始化温湿度传感器GPS_Init();   // 初始化GPS模块
}// 读取传感器数据
void Read_Sensors(float *temperature, float *humidity, char *location) {*temperature = DHT11_ReadTemperature(); // 读取温度*humidity = DHT11_ReadHumidity();       // 读取湿度GPS_ReadLocation(location);              // 读取GPS位置
}// 发布MQTT消息
void Publish_Data(float temperature, float humidity, char *location) {char payload[128];snprintf(payload, sizeof(payload), "{\"temperature\": %.2f, \"humidity\": %.2f, \"location\": \"%s\"}", temperature, humidity, location);MQTT_Publish(&client, MQTT_TOPIC, payload); // 发布数据到MQTT主题
}// 主函数
int main(void) {HAL_Init(); // 初始化HAL库Sensor_Init(); // 初始化传感器MQTT_Connect(&client, "broker.hivemq.com", 1883); // 连接MQTT Brokerwhile (1) {float temperature, humidity;char location[50];Read_Sensors(&temperature, &humidity, location); // 读取数据Publish_Data(temperature, humidity, location); // 发布数据HAL_Delay(5000); // 每5秒发送一次数据}
}
代码讲解
  • 库引用

    • mqtt.h:包含MQTT协议相关的函数。
    • gps.h:包含GPS模块的初始化和读取功能。
    • dht11.h:包含温湿度传感器的相关函数。
  • MQTT主题:定义了将要发布的MQTT主题。

  • Sensor_Init():初始化传感器,确保在使用之前设置好。

  • Read_Sensors():读取温度、湿度和位置数据。

  • Publish_Data():将读取的数据格式化为JSON字符串并通过MQTT发布。

  • main()

    • 初始化HAL库和传感器。
    • 连接到MQTT Broker。
    • 进入一个无限循环,每5秒读取一次传感器数据并发布。

2. MQTT Broker设置

我们将使用Eclipse Mosquitto作为MQTT Broker。在本地或云服务器上安装Mosquitto后,可以通过以下命令启动它:

mosquitto -v

3. 数据接收与处理

在云端,我们可以使用Python编写一个简单的MQTT客户端来接收数据并存储到数据库中。

import paho.mqtt.client as mqtt
import json
import mysql.connector# 数据库连接
db = mysql.connector.connect(host="localhost",user="user",password="password",database="logistics_db"
)
cursor = db.cursor()# MQTT回调函数
def on_message(client, userdata, message):data = json.loads(message.payload)temperature = data['temperature']humidity = data['humidity']location = data['location']# 将数据插入到数据库sql = "INSERT INTO sensor_data (temperature, humidity, location) VALUES (%s, %s, %s)"cursor.execute(sql, (temperature, humidity, location))db.commit()print(f"Saved data: {temperature}, {humidity}, {location}")# MQTT客户端设置
client = mqtt.Client()
client.on_message = on_message
client.connect("broker.hivemq.com", 1883, 60)
client.subscribe("logistics/data")# 循环处理
client.loop_forever()
代码讲解
  • 数据连接:使用mysql.connector连接到MySQL数据库。

  • on_message():当接收到MQTT消息时,该回调函数会被调用。它将消息负载解析为JSON格式,并提取温度、湿度和位置信息。

    • 数据插入到数据库中:使用SQL插入语句将传感器数据存储到MySQL数据库的sensor_data表中。
    • db.commit():提交对数据库的更改,以确保数据被保存。
  • MQTT客户端设置

    • 创建MQTT客户端实例,并设置消息回调函数。
    • 连接到MQTT Broker(在此示例中使用broker.hivemq.com)。
    • 订阅主题logistics/data,以接收来自STM32微控制器发送的数据。
  • 循环处理:调用client.loop_forever(),使客户端持续运行并处理接收到的消息。

4. 数据存储与分析

在数据库中,我们可以创建一个表来存储传感器数据。以下是MySQL创建表的示例SQL语句:

CREATE TABLE sensor_data (id INT AUTO_INCREMENT PRIMARY KEY,temperature FLOAT,humidity FLOAT,location VARCHAR(255),timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
);
  • 字段说明
    • id:自增主键。
    • temperature:温度值。
    • humidity:湿度值。
    • location:位置字符串。
    • timestamp:记录插入的时间戳,默认使用当前时间。

5. 数据分析与可视化

为了实现数据分析,我们可以使用Apache Spark处理存储在MySQL中的数据。以下是一个简单的PySpark示例代码,用于读取数据并进行分析:

from pyspark.sql import SparkSession# 创建Spark会话
spark = SparkSession.builder \.appName("Logistics Data Analysis") \.config("spark.jars", "mysql-connector-java.jar") \.getOrCreate()# 读取MySQL数据
jdbc_url = "jdbc:mysql://localhost:3306/logistics_db"
properties = {"user": "user","password": "password","driver": "com.mysql.cj.jdbc.Driver"
}
df = spark.read.jdbc(url=jdbc_url, table="sensor_data", properties=properties)# 数据分析示例:计算平均温度和湿度
df.createOrReplaceTempView("sensor")
avg_data = spark.sql("SELECT AVG(temperature) as avg_temp, AVG(humidity) as avg_humidity FROM sensor")
avg_data.show()
代码讲解
  • Spark会话:创建一个Spark会话以处理数据。
  • 读取MySQL数据:使用JDBC连接读取sensor_data表中的数据。
  • 数据分析:创建临时视图sensor并执行SQL查询计算平均温度和湿度。
  • 显示结果avg_data.show()将输出计算结果。

6. 数据可视化

使用Grafana进行数据可视化,可以通过连接MySQL数据源创建仪表板来监控实时数据。以下是简要步骤:

  1. 安装Grafana

    sudo apt-get install grafana
    
  2. 启动Grafana

    sudo service grafana-server start
    
  3. 访问Grafana界面:打开浏览器并访问http://localhost:3000,默认用户名和密码均为admin

  4. 添加数据源

    • 选择MySQL,配置连接信息(主机、数据库名、用户、密码等)。
  5. 创建仪表板

    • 使用查询创建面板,显示温度和湿度的实时变化。

项目总结

本项目展示了如何构建一个智能物流管理系统,综合使用了嵌入式系统、传感器技术、MQTT协议、云平台和数据库等多种技术栈。通过STM32微控制器采集数据,使用MQTT协议将数据传输到云端,并利用Python和Spark进行数据分析和可视化,最终实现了对物流数据的实时监控和分析。

在未来的工作中,可以进一步优化以下方面:

  • 数据处理效率:使用Apache Kafka等消息队列处理高并发数据流。
  • 机器学习模型:利用历史数据进行预测分析,实现更智能的物流管理。
  • 安全性:增强数据传输和存储的安全性,确保用户隐私和数据安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/384879.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Opencv学习项目4——手部跟踪

上一篇博客我们介绍了mediapipe库和对手部进行了检测,这次我们进行手部关键点的连线 代码实现 import cv2 import mediapipe as mpcap cv2.VideoCapture(1) mpHands mp.solutions.hands hands mpHands.Hands() mpDraw mp.solutions.drawing_utilswhile True:…

粗解React 和 Vue 的异同

相同点: 1、都使用虚拟 DOM【Virtural DOM】 Vue与React都使用了 Virtual DOM Diff算法, 不管是Vue的Template模板options api 写法, 还是React的Class或者Function写法,最后都是生成render函数,而render函数执行返回VNode(虚拟…

HBuilder X中配置vue-cli项目和UI库

目录 一.前端项目结构 二.在HBuilder X中搭建vue-cli项目 1. 安装node.js前端环境 2. HBuilder X创建一个vue-cli项目 3. vue-cli项目结构 4. 如何运行前端项目 5. 创建组件 6. 组件路由(页面跳转) 6.1 创建router目录 6.2 使用路由 6.3 在main.js中配置路由 6.4 路…

音频剪辑里的几种基础操作

音频对于视频的重要性,怎么强调都不为过,它在视频里扮演着举足轻重的角色,对观众有着极为深远的影响。下面为您阐述音频在视频中的关键意义: ① 情感传递:音频有强大的情感传达能力,借助声音的起伏变化、音…

Ansible之playbook剧本编写(二)

tags 模块 可以在一个playbook中为某个或某些任务定义“标签”,在执行此playbook时通过ansible-playbook命令使用--tags选项能实现仅运行指定的tasks。 playbook还提供了一个特殊的tags为always。作用就是当使用always作为tags的task时,无论执行哪一个t…

java基础概念05-运算符

一、自增自减运算符 二、赋值运算符 2-1、注意 三、关系运算符 四、逻辑运算符 4-1、短路逻辑运算符 五、三元运算符 六、运算符的优先级

想要连接稳定的远程控软件吗?这4款软件不要错过

远程控制电脑是一种现代社会高效便捷的办公方式。这种方式可以不论时间不论地点都可以调用到办公电脑里的文件,如果你办公也有这个需求,那就看看我介绍的工具吧。 1.RL远程控制 直通车>>https://www.raylink.live 这个软件非常适合用来进行手机…

鸿蒙OS物联网创新应用实训解决方案

摘要: 随着物联网技术的飞速发展,各种智能设备和传感器正在以前所未有的速度融入我们的日常生活。华为推出的鸿蒙操作系统(HarmonyOS)作为一款面向全场景、多设备、无缝连接的分布式操作系统,为物联网领域带来了全新的…

photoshop学习笔记——选区3 快速选择工具

快速选择工具 W shift W 在3种快速选择工具之间切换 对象选择工具 photoshop CC中没有这个工具,利用AI,将款选中的对象快速的提取选区,测试了一下,选区制作的非常nice快速选择工具 跟磁性套索类似,自动识别颜色相似…

java学习---异常

前言 由于被分母不能为0,所以代码到int yn/m;会抛出异常,停止运行下去,但是如果是个庞大的代码,因为这种小错误而整个程序崩溃,会大大影响代码整体的健壮性,所以此时就需要我们得异常处理了 选中异常代码部…

运维上云/直播上云EasyNVS视频上云管理平台配置域名时的注意事项

EasyNVS视频上云管理平台拥有完整的视频流媒体服务能力和运维管理服务能力,不仅可以通过平台对EasyNVR、EasyGBS进行统一管理,还能解决设备现场没有固定公网IP却需要在公网直播的需求。 有用户反馈,在项目现场配置了EasyNVS的HTTPS证书&#…

UGUI优化篇--UGUI合批

UGUI合批 UGUI合批规则概述UGUI性能查看工具合批部分的特殊例子一个白色image、蓝色image覆盖了Text,白色image和Text哪个先渲染 Mask合批Mask为什么会产生两个drawcallMask为什么不能合批Mask注意要点 RectMask2D为什么RecMask2D比Mask性能更好主要代码RectMask2D注…

Python 爬虫入门(一):从零开始学爬虫 「详细介绍」

Python 爬虫入门(一):从零开始学爬虫 「详细介绍」 前言1.爬虫概念1.1 什么是爬虫?1.2 爬虫的工作原理 2. HTTP 简述2.1 什么是 HTTP?2.2 HTTP 请求2.3 HTTP 响应2.4 常见的 HTTP 方法 3. 网页的组成3.1 HTML3.2 CSS3.…

vue3知识

目录 基础vue开发前的准备vue项目目录结构模板语法属性绑定条件渲染列表渲染通过key管理状态事件处理事件传参事件修饰符数组变化侦测计算属性Class绑定style绑定侦听器表单输入绑定模板引用组件组成组件嵌套关系组件注册方式组件传递数据Props(父传子)组件传递多种数据类型组件…

电影院售票网站

你好呀,我是计算机学姐码农小野!如果有相关需求,可以私信联系我。 开发语言:Java 数据库:MySQL 技术:SSM框架 工具:IDEA/Eclipse、Navicat、Maven 系统展示 首页 用户管理界面 正在上映管…

Vue---vue3+vite项目内使用devtools,快速开发!

背景 我们在前期开发时,一般使用chrome或者edge浏览器,会使用vue-devtools或react-devtools(此插件个人未使用,可百度下是否可内嵌入项目!)来审查vue项目;这个需要安转浏览器插件才可支持&…

大模型llama结构技术点分享;transformer模型常见知识点nlp面经

1、大模型llama3技术点 参考:https://www.zhihu.com/question/662354435/answer/3572364267 Llama1-3,数据tokens从1-2T到15T;使用了MHA(GQA缓存);上下文长度从2-4-8K;应用了强化学习对其。 1、pretraini…

RedHat9 | Ansible 处理任务失败

环境版本说明 RedHat9 [Red Hat Enterprise Linux release 9.0]Ansible [core 2.13.3]Python [3.9.10]jinja [3.1.2] 1. 忽略任务失败 Ansible评估各任务的返回代码,从而确定任务是成功还是失败通常而言,当任务失败时,Ansible将立即在该主…

可以免费合并pdf的软件 合并pdf文件的软件免费 合并pdf的软件免费

在数字化办公的今天,pdf格式因其稳定性和跨平台兼容性被广泛使用。然而,当我们需要将多个 pdf 文件合并为一个时,却往往感到力不从心。本文将为你介绍几款强大的pdf文件合并软件,让你轻松管理文档。 方法一、使用pdf转换器 步骤1…

爬虫 APP 逆向 ---> 粉笔考研

环境: 粉笔考研 v6.3.15:https://www.wandoujia.com/apps/1220941/history_v6031500雷电9 模拟器:https://www.ldmnq.com/安装 magisk:https://blog.csdn.net/Ruaki/article/details/135580772安装 Dia 插件 (作用:禁…