代码随想录训练第三十天|01背包理论基础、01背包、LeetCode416.分割等和子集

文章目录

  • 01背包理论基础
  • 01背包
    • 二维dp数组01背包
    • 一维dp数组(滚动数组)
  • 416.分割等和子集
    • 思路

01背包理论基础

背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了

之前可能有些录友已经可以熟练写出背包了,但只要把这个文章仔细看完,相信你会意外收获!

01背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划-背包问题

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是 o ( 2 n ) o(2^n) o(2n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

二维dp数组01背包

依然动规五部曲分析一波。

  1. 确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i] [j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

只看这个二维数组的定义,大家一定会有点懵,看下面这个图:

动态规划-背包问题1

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

  1. 确定递推公式

再回顾一下dp[i] [j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i] [j],

  • 不放物品i:由dp[i - 1] [j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i] [j]就是dp[i - 1] [j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1] [j - weight[i]]推出,dp[i - 1] [j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1] [j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i] [j] = max(dp[i - 1] [j], dp[i - 1] [j - weight[i]] + value[i]);

  1. dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

动态规划-背包问题2

在看其他情况。

状态转移方程 dp[i] [j] = max(dp[i - 1] [j], dp[i - 1] [j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0] [j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0] [j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0] [j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

//就是先保证只选第一个物品的背包价值
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

此时dp数组初始化情况如图所示:

动态规划-背包问题7

dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

如图:

动态规划-背包问题10

最后初始化代码如下:

// 初始化 dp
int[][] dp = new int[weight.length][bagweight+1]
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

费了这么大的功夫,才把如何初始化讲清楚,有时候感觉是不靠谱的

  1. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

动态规划-背包问题3

那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

那么我先给出先遍历物品,然后遍历背包重量的代码。

        for (int i = 1; i < weight.length; i++) {for (int j = 0; j < bagSize + 1; j++) {//如果当前背包的空间小于当前物品的重量,则不放入当前物品if (j < weight[i]) {dp[i][j] = dp[i - 1][j];}/*** 当前背包的容量可以放下物品i* 那么此时分两种情况:*    1、不放物品i*    2、放物品i* 比较这两种情况下,哪种背包中物品的最大价值最大*/else {//不放当前物品的价值int not = dp[i - 1][j];//放入当前物品的价值int yes = dp[i - 1][j - weight[i]] + value[i];dp[i][j] = Math.max(not, yes);}}}

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

动态规划-背包问题5

  1. 举例推导dp数组

来看一下对应的dp数组的数值,如图:

动态规划-背包问题4

最终结果就是dp[2][4]。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。

主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。

public static void main(String[] args) {int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagSize = 4;testWeightBagProblem(weight, value, bagSize);
}/*** 动态规划获得结果** @param weight  物品的重量* @param value   物品的价值* @param bagSize 背包的容量*/
public static void testWeightBagProblem(int[] weight, int[] value, int bagSize) {//创建dp数组,第一个为获取物品的数量,第二个为背包的大小int[][] dp = new int[weight.length][bagSize + 1];//初始化dp数组,只初始化第一行for (int i = 0; i < bagSize + 1; i++) {if (i >= weight[0]) {dp[0][i] = value[0];}}for (int i = 1; i < weight.length; i++) {for (int j = 0; j < bagSize + 1; j++) {//如果当前背包的空间小于当前物品的重量,则不放入当前物品if (j < weight[i]) {dp[i][j] = dp[i - 1][j];}/*** 当前背包的容量可以放下物品i* 那么此时分两种情况:*    1、不放物品i*    2、放物品i* 比较这两种情况下,哪种背包中物品的最大价值最大*/else {//不放当前物品的价值int not = dp[i - 1][j];//放入当前物品的价值int yes = dp[i - 1][j - weight[i]] + value[i];dp[i][j] = Math.max(not, yes);}}}// 打印dp数组for (int i = 0; i < weight.length; i++) {for (int j = 0; j <= bagSize; j++) {System.out.print(dp[i][j] + "\t");}System.out.println("\n");}
}

一维dp数组(滚动数组)

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i] [j], dp[i] [j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

读到这里估计大家都忘了 dp[i] [j]里的i和j表达的是什么了,i是物品,j是背包容量。

dp[i] [j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

一定要时刻记住这里i和j的含义,要不然很容易看懵了。

动态规划五部曲

  1. 确定dp数组的含义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

  1. 确定一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于二维dp数组中的dp[i-1] [j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = Math.max(dp[j],dp[j - weight[i]] + value[i])

可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。

  1. 一维dp数组初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

  1. 一维dp数组遍历顺序
        for (int i = 1; i < weight.length; i++) {for (int j = bagSize; j >= weight[i]; j--) {//当前是不需要再进行背包的空间与当前物品的重量的判断dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}

这里大家发现和二维dp的写法中,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组遍历的时候不用倒序呢?

因为对于二维dp,dp[i] [j]都是通过上一层即dp[i - 1] [j]计算而来,本层的dp[i] [j]并不会被覆盖!

使用一维数组的话,从前向后遍历会覆盖上一层数组,会导致物品i会被放入多次,从后向前遍历则避免了这个问题.

(如何这里读不懂,大家就要动手试一试了,空想还是不靠谱的,实践出真知!)

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

(这里如果读不懂,就再回想一下dp[j]的定义,或者就把两个for循环顺序颠倒一下试试!)

所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点大家一定要注意。

  1. 举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

动态规划-背包问题9

public static void main(String[] args) {int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagSize = 4;testWeightBagProblem(weight, value, bagSize);
}/*** 动态规划获得结果** @param weight  物品的重量* @param value   物品的价值* @param bagSize 背包的容量*/
public static void testWeightBagProblem(int[] weight, int[] value, int bagSize) {//创建dp数组,第一个为获取物品的数量,第二个为背包的大小int[] dp = new int[bagSize + 1];//初始化dp数组,只初始化第一行for (int i = 0; i < bagSize + 1; i++) {if (i >= weight[0]) {dp[i] = value[0];}}//第一层为物品的重量for (int i = 1; i < weight.length; i++) {//第二层为背包的容量for (int j = bagSize; j >= weight[i]; j--) {//当前是不需要再进行背包的空间与当前物品的重量的判断//一共就两种情况,只需要判断这dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}// 打印dp数组for (int i = 0; i < dp.length; i++) {System.out.print(dp[i] + "  ");}
}

416.分割等和子集

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

示例 1:

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

示例 2:

输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

Related Topics

  • 数组

  • 动态规划

思路

这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题

  • 698.划分为k个相等的子集
  • 473.火柴拼正方形

这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。

本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。

背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。

要注意题目描述中商品是不是可以重复放入。

即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,我们就可以套用01背包,来解决这个问题了。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

有录友可能想,那还有装不满的时候?

拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。

而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

  1. dp数组初始化

在01背包,一维dp如何初始化,已经讲过,

从dp[j]的定义来看,首先dp[0]一定是0。

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

代码如下:

    int target = sum / 2;int[] dp = new int[target + 1];
  1. 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

    //遍历数组(物品)for (int i = 0; i < nums.length; i++) {// 每一个元素一定是不可重复放入,所以从大到小遍历for (int j = target; j >= nums[i]; j--) {//物品 i 的重量是 nums[i],其价值也是 nums[i]dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}}
  1. 举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

416.分割等和子集2

最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。

整体代码如下:

public boolean canPartition(int[] nums) {if (nums == null || nums.length == 0) return false;//先找到当前nums的总和int sum = 0;for (int i = 0; i < nums.length; i++) {sum += nums[i];}//总和为基数直接返回falseif (sum % 2 == 1) {return false;}int target = sum / 2;int[] dp = new int[target + 1];//遍历数组(物品)for (int i = 0; i < nums.length; i++) {// 每一个元素一定是不可重复放入,所以从大到小遍历for (int j = target; j >= nums[i]; j--) {//物品 i 的重量是 nums[i],其价值也是 nums[i]dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}}return dp[target] == target;
}
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数

二维dp数组解法

public boolean canPartition(int[] nums) {if (nums == null || nums.length == 0) return false;//先找到当前nums的总和int sum = 0;for (int i = 0; i < nums.length; i++) {sum += nums[i];}//总和为基数直接返回falseif (sum % 2 == 1) {return false;}int target = sum / 2;int[][] dp = new int[nums.length][target + 1];//遍历数组(物品)for (int i = 1; i < nums.length; i++) {for (int j = 0; j <= target; j++) {//如果当前背包的空间小于当前物品的重量,则不放入当前物品if (j < nums[i]) {dp[i][j] = dp[i - 1][j];} else {//如果当前背包的空间大于等于当前物品的重量,选择放入或者不放入int not = dp[i - 1][j];int yes = dp[i - 1][j - nums[i]] + nums[i];dp[i][j] = Math.max(not, yes);}}}return dp[nums.length - 1][target] == target;
}
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/385066.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

领略诗词之妙,发觉生活之美。

文章目录 引言落霞与孤鹜齐飞,秋水共长天一色。野渡无人舟自横。吹灭读书灯,一身都是月。我醉欲眠卿且去,明朝有意抱琴来。赌书消得泼茶香,当时只道是寻常。月上柳梢头,人约黄昏后。最是人间留不住,朱颜辞镜花辞树。山中何事?松花酿酒,春水煎茶。似此星辰非昨夜,为谁风…

Github 2024-07-26开源项目日报 Top10

根据Github Trendings的统计,今日(2024-07-26统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Java项目2TypeScript项目2C++项目2HTML项目1Python项目1C#项目1Lua项目1JavaScript项目1Vue项目1C项目1免费编程学习平台:freeCodeCamp.org 创…

vuepress搭建个人文档

vuepress搭建个人文档 文章目录 vuepress搭建个人文档前言一、VuePress了解二、vuepress-reco主题个人博客搭建三、vuepress博客部署四、vuepress后续补充 总结 vuepress搭建个人文档 所属目录&#xff1a;项目研究创建时间&#xff1a;2024/7/23作者&#xff1a;星云<Xing…

c++语言学习注意事项

当学习C语言时&#xff0c;有几个重要的注意事项可以帮助初学者更有效地掌握这门强大的编程语言&#xff1a; 1. 理解基本概念和语法 C 是一门复杂且功能强大的编程语言&#xff0c;因此理解其基本概念和语法至关重要。初学者应该重点掌握以下几个方面&#xff1a; 基本语法和…

WordPress原创插件:自定义文章标题颜色

插件设置截图 文章编辑时&#xff0c;右边会出现一个标题颜色设置&#xff0c;可以设置为任何颜色 更新记录&#xff1a;从输入颜色css代码&#xff0c;改为颜色选择器&#xff0c;更方便&#xff01; 插件免费下载 https://download.csdn.net/download/huayula/89585192…

网络基础之(11)优秀学习资料

网络基础之(11)优秀学习资料 Author&#xff1a;Once Day Date: 2024年7月27日 漫漫长路&#xff0c;有人对你笑过嘛… 全系列文档可参考专栏&#xff1a;通信网络技术_Once-Day的博客-CSDN博客。 参考文档&#xff1a; 网络工程初学者的学习方法及成长之路&#xff08;红…

02、爬虫数据解析-Re解析

数据解析的目的是不拿到页面的全部内容&#xff0c;只拿到部分我们想要的内容内容。 Re解析就是正则解析&#xff0c;效率高准确性高。学习本节内容前需要学会基础的正则表达式。 一、正则匹配规则 1、常用元字符 . 匹配除换行符以外的字符 \w 匹配字母或数字或下划…

我当初装anaconda的时候浏览器默认下载路径在d盘,现在想用ipython的时候用不了了咋办?...

点击上方“Python爬虫与数据挖掘”&#xff0c;进行关注 回复“书籍”即可获赠Python从入门到进阶共10本电子书 今 日 鸡 汤 红豆生南国&#xff0c;春来发几枝。 大家好&#xff0c;我是Python进阶者。 一、前言 前几天在Python白银交流群【041】问了一个Python环境的问题&am…

Vue中el的两种写法

大家好我是前端寄术区博主PleaSure乐事。今天了解到了Vue当中有关el的两种写法&#xff0c;记录下来与大家分享&#xff0c;希望对大家有所帮助。 方法一 解释 第一种方法我们直接用new创建并初始化一个新的 Vue 实例&#xff0c;并定义了 Vue 实例的数据对象&#xff0c;在给…

postman请求响应加解密

部分接口&#xff0c;需要请求加密后&#xff0c;在发动到后端。同时后端返回的响应内容&#xff0c;也是经过了加密。此时&#xff0c;我们先和开发获取到对应的【密钥】&#xff0c;然后在postman的预执行、后执行加入js脚本对明文请求进行加密&#xff0c;然后在发送请求&am…

【Vue实战教程】之 Vue Router 路由详解

Vue Router路由 1 路由基础 1.1 什么是路由 用Vue.js创建的项目是单页面应用&#xff0c;如果想要在项目中模拟出来类似于页面跳转的效果&#xff0c;就要使用路由。其实&#xff0c;我们不能只从字面的意思来理解路由&#xff0c;从字面上来看&#xff0c;很容易把路由联想…

WordPress插件介绍页源码单页Html

源码介绍 WordPress插件介绍页源码单页Html源码&#xff0c;这是一款产品介绍使用页面&#xff0c;也可以用来做其他软件或者应用介绍下载页&#xff0c;界面简约美观&#xff0c;源码由HTMLCSSJS组成&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器…

Angular由一个bug说起之八:实践中遇到的一个数据颗粒度的问题

互联网产品离不开数据处理&#xff0c;数据处理有一些基本的原则包括&#xff1a;准确性、‌完整性、‌一致性、‌保密性、‌及时性。‌ 准确性&#xff1a;是数据处理的首要目标&#xff0c;‌确保数据的真实性和可靠性。‌准确的数据是进行分析和决策的基础&#xff0c;‌因此…

transformers进行学习率调整lr_scheduler(warmup)

一、get_scheduler实现warmup 1、warmup基本思想 Warmup&#xff08;预热&#xff09;是深度学习训练中的一种技巧&#xff0c;旨在逐步增加学习率以稳定训练过程&#xff0c;特别是在训练的早期阶段。它主要用于防止在训练初期因学习率过大导致的模型参数剧烈波动或不稳定。…

Unity3D之TCP网络通信(客户端)

文章目录 概述TCP核心类异步机制 Unity中创建TCP客户端Unity中其它脚本获取TCP客户端接受到的数据后续改进 本文将以Unity3D应用项目作为客户端去连接制定的服务器为例进行相关说明。 Unity官网参考资料&#xff1a; https://developer.unity.cn/projects/6572ea1bedbc2a001ef…

20240725java的Controller、DAO、DO、Mapper、Service层、反射、AOP注解等内容的学习

在Java开发中&#xff0c;‌controller、‌dao、‌do、‌mapper等概念通常与MVC&#xff08;‌Model-View-Controller&#xff09;‌架构和分层设计相关。‌这些概念各自承担着不同的职责&#xff0c;‌共同协作以构建和运行一个应用程序。‌以下是这些概念的解释&#xff1a;‌…

当全球银行系统“崩溃”时会发生什么?

有句名言&#xff1a;“当美国打喷嚏时&#xff0c;世界就会感冒……”换句话说&#xff0c;当人们对美国及其经济稳定性的信心下降时&#xff0c;其他经济体&#xff08;以及黄金、白银和股票等资产&#xff09;的价值往往会下降。 与任何其他资产类别一样&#xff0c;加密货…

黑马JavaWeb企业级开发(知识清单)03——HTML实现正文:排版(音视频、换行、段落)、布局标签(div、span)、盒子模型

文章目录 前言一、正文排版1. 视频标签: < video >2. 音频标签: < audio >3. 换行标签: < br >4. 段落标签 < p >5. vscode实现 二、布局1. 盒子模型2. 布局标签< div >和< span >3. VScode实现 三、源代码和运行结果总结 前言 本篇文章是…

leetcode3098. 求出所有子序列的能量和

官解 class Solution(object):# 定义常量mod int(1e9 7) # 模数&#xff0c;用于防止结果溢出inf float(inf) # 无穷大&#xff0c;用于初始化时的特殊值def sumOfPowers(self, nums, k):n len(nums) # 数组长度res 0 # 用于存储最终结果# 三维动态规划表&#xff0c;…