LiteratureReading:[2023] GPT-4: Technical Report

文章目录

  • 一、文献简明(zero)
  • 二、快速预览(first)
    • 1、标题分析
    • 2、作者介绍
    • 3、引用数
    • 4、摘要分析
      • (1)翻译
      • (2)分析
    • 5、总结分析
      • (1)翻译
      • (2)分析
    • 6、部分图表
    • 7、引言分析
      • (1)翻译
      • (2)分析
    • 8、全部标题
    • 9、参考文献
  • 三、重点阅读(second)
  • 四、深入理解(third)
  • 五、技术复现(forth)

一、文献简明(zero)

领域:NLP、大模型的理论与实践
标题:[2023] GPT-4: Technical Report(GPT4-技术报告)
作者:OpenAI

贡献:提出了GPT-4模型,进一步扩展了生成式预训练模型的规模和应用范围。
链接:https://arxiv.org/pdf/2303.08774

二、快速预览(first)

1、标题分析

《GPT-4技术报告》:
报告内容概述

  • 模型介绍:GPT-4是一种大型多模态模型,能够处理图像和文本输入并产生文本输出。它在多种应用场景中具有潜力,如对话系统、文本摘要和机器翻译。
  • 性能评估:GPT-4在多种基准测试和模拟考试中表现出色,尤其是在一些原本为人类设计的考试中,其成绩超过了大多数人类考生。例如,在模拟律师资格考试中,GPT-4的成绩排名前10%,而GPT-3.5则排名后10%。
  • 可预测的扩展性:报告讨论了如何通过小规模训练模型来预测GPT-4的性能,这有助于在训练前做出关于对齐、安全性和部署的决策。
  • 多语言能力:GPT-4不仅在英语基准测试中表现优异,还在多种语言的测试中超越了现有模型,包括一些低资源语言如拉脱维亚语、威尔士语和斯瓦希里语。
  • 安全性和局限性:尽管GPT-4能力强大,但它也存在局限性,如可能出现“幻觉”、上下文窗口有限且无法从经验中学习。报告还讨论了如何通过对抗性测试和模型辅助安全管道来减轻潜在风险。

报告的意义

  • 技术进步:GPT-4的性能提升表明了大型语言模型在自然语言处理领域的巨大潜力,尤其是在多语言和多模态任务中。
  • 安全性和可靠性:报告强调了在模型开发过程中对安全性和可靠性的关注,这对于未来AI系统的广泛应用至关重要。
  • 研究方向:该报告为未来的研究提供了方向,特别是在模型的可预测性、多语言能力和安全性方面。

2、作者介绍

在这里插入图片描述

OpenAI 是一个致力于发展通用人工智能(AGI)的非营利性研究组织,它由Elon Musk、Sam Altman、Greg Brockman、Ilya Sutskever等人于2015年共同创立。OpenAI 的目标是确保人工智能技术的发展能够惠及全人类,并且以安全和负责任的方式推进。

OpenAI 开发了一系列重要的人工智能模型和工具,包括但不限于GPT(生成预训练转换器)系列模型,这些模型在自然语言处理领域取得了显著的成就。GPT-3 是OpenAI 开发的一个非常著名的语言模型,它能够理解和生成自然语言,被广泛应用于文本生成、翻译、问答系统等多种场景。

OpenAI 也致力于提高公众对人工智能潜在影响的认识,并推动相关政策和法规的发展,以确保技术的健康发展和广泛应用。

3、引用数

……

4、摘要分析

在这里插入图片描述

(1)翻译

我们报告了GPT-4的开发情况,这是一个大规模的多模态模型,可以接受图像和文本输入并生成文本输出。虽然在许多现实世界的场景中,GPT-4的能力不如人类,但它在各种专业和学术基准测试中表现出人类水平的性能,包括通过模拟律师考试,得分位于前10%的考生之列。GPT-4是基于Transformer的模型,经过预训练以预测文档中的下一个token。训练后的对齐过程提高了在事实性和期望行为方面的性能。该项目的一个核心组成部分是开发在广泛范围内可预测行为的基础设施和优化方法。这使我们能够基于训练计算量不超过GPT-4的1/1,000的模型,准确预测GPT-4的一些性能方面。

(2)分析

  1. 多模态能力:GPT-4可以接受图像和文本输入,这表明它具有多模态处理能力,能够理解和生成多种类型的数据。

  2. 性能表现:尽管在某些实际应用中不如人类,GPT-4在专业和学术测试中表现出色,例如在模拟律师考试中取得了优异成绩。这显示了其在特定领域的强大能力。

  3. 基于Transformer的模型:GPT-4是基于Transformer架构的,这是一种广泛应用于自然语言处理的深度学习模型,以其在处理序列数据方面的高效性而闻名。

  4. 训练后的对齐:通过训练后的对齐过程,GPT-4在事实性和期望行为方面的表现得到了提升。这表明开发者在模型训练后进行了额外的调整,以确保模型输出更符合预期。

  5. 可预测的基础设施和优化方法:项目开发了可预测行为的基础设施和优化方法,这有助于在不同规模上保持模型性能的一致性。

  6. 性能预测:通过在小规模模型上进行训练,开发者能够准确预测GPT-4的性能。这不仅节省了计算资源,还提高了开发效率。

总的来说,这段摘要强调了GPT-4在多模态处理、专业测试表现、模型架构、训练后对齐、基础设施和性能预测等方面的进展和优势。

5、总结分析

在这里插入图片描述

(1)翻译

我们对GPT-4进行了描述,这是一个在某些困难的专业和学术基准测试中具有人类水平表现的大型多模态模型。GPT-4在一系列自然语言处理(NLP)任务中的表现超越了现有的大型语言模型,并超过了绝大多数已报告的最先进系统(这些系统通常包括特定任务的微调)。我们发现,虽然通常在英语中测量,但改进的能力可以在许多不同的语言中得到证明。我们强调了可预测的扩展性如何使我们能够准确预测GPT-4的损失和能力。

由于能力的提升,GPT-4带来了新的风险,我们讨论了一些理解和改进其安全性和对齐的方法和结果。尽管仍有许多工作要做,但GPT-4代表了朝着广泛有用且安全部署的AI系统迈出的重要一步。

(2)分析

这段结论总结了GPT-4的主要成就和挑战:

  1. 人类水平的表现:GPT-4在某些专业和学术基准测试中达到了人类水平的表现,这表明它在理解和生成自然语言方面的能力非常强。

  2. 超越现有模型:GPT-4不仅超越了现有的大型语言模型,还超过了大多数已报告的最先进系统。这表明GPT-4在自然语言处理任务中具有显著的优势。

  3. 多语言能力:GPT-4的改进能力不仅限于英语,还可以在许多不同的语言中得到证明。这表明GPT-4具有跨语言的通用性和适应性。

  4. 可预测的扩展性:通过可预测的扩展性,研究人员能够准确预测GPT-4的性能。这有助于在模型开发和部署过程中做出更明智的决策。

  5. 新的风险:随着能力的提升,GPT-4也带来了新的风险。这需要研究人员和开发者采取额外的措施来确保其安全性和对齐性。

  6. 重要一步:尽管仍有许多工作要做,但GPT-4代表了朝着广泛有用且安全部署的AI系统迈出的重要一步。这表明GPT-4在推动AI技术发展和应用方面具有重要意义。

总的来说,这段结论强调了GPT-4在自然语言处理领域的显著成就,同时也指出了其带来的挑战和未来的发展方向。

6、部分图表

在这里插入图片描述
这张图表展示了GPT-4和GPT-3.5在多种学术和专业考试中的表现,按GPT-3.5的表现从低到高排序。图表中使用了两种颜色来区分GPT-4在有无视觉输入(图像)的情况下的表现:绿色代表GPT-4(无视觉输入),蓝色代表GPT-4(有视觉输入)。

主要观察点:

  1. 总体表现

    • GPT-4在大多数考试中的表现都优于GPT-3.5,无论是有无视觉输入。
    • GPT-4(无视觉输入)和GPT-4(有视觉输入)之间的表现差异不大,说明视觉输入对GPT-4的考试成绩提升有限。
  2. 考试类型

    • 图表涵盖了从AP(Advanced Placement,大学预修课程)考试到专业执照考试等多种类型的考试,如AP生物学、AP微积分BC、GRE(Graduate Record Examinations,研究生入学考试)等。
    • GPT-4在AP生物学考试中的表现尤为突出,达到了最高分(5/5),但图表中显示为85百分位,因为只有15%的考生达到了这个分数。
  3. 百分位

    • 图表中的百分位表示模型得分在所有考生中的相对位置。例如,80%的百分位意味着模型的得分高于80%的考生。
    • GPT-4在大多数考试中都达到了60%以上的百分位,显示出其在多种考试中的竞争力。
  4. 表现差异

    • 在某些考试中,如AP生物学和AP环境科学,GPT-4的表现特别突出,达到了接近或超过90%的百分位。
    • 在其他考试中,如AP英语语言与写作和AP美国历史,GPT-4的表现相对较低,但仍高于GPT-3.5。
  5. 视觉输入的影响

    • 在大多数考试中,视觉输入对GPT-4的表现提升有限,但在某些考试中,如AP生物学,视觉输入可能有助于提高得分。

结论:

这张图表清楚地展示了GPT-4在多种学术和专业考试中的优越表现,尤其是在AP生物学和AP环境科学等考试中。GPT-4在大多数考试中都超越了GPT-3.5,显示出其在处理复杂问题和生成高质量答案方面的能力。此外,图表还表明,尽管视觉输入对GPT-4的考试成绩提升有限,但在某些特定考试中,视觉输入可能有助于提高得分。

7、引言分析

(1)翻译

  1. 引言
    这份技术报告介绍了GPT-4,这是一个能够处理图像和文本输入并生成文本输出的大型多模态模型。这类模型是一个重要的研究领域,因为它们有潜力在广泛的应用中使用,如对话系统、文本摘要和机器翻译。因此,近年来它们受到了极大的关注和进展。

  2. 开发目标
    开发这类模型的主要目标之一是提高它们理解和生成自然语言文本的能力,特别是在更复杂和微妙的场景中。为了测试GPT-4在这些场景中的能力,它在多种原本为人类设计的考试中进行了评估。在这些评估中,GPT-4表现相当出色,经常超越大多数人类测试者。例如,在模拟律师考试中,GPT-4的得分位于前10%的测试者之列。这与GPT-3.5形成对比,后者的得分位于后10%。

  3. NLP基准测试
    在一系列传统的自然语言处理(NLP)基准测试中,GPT-4不仅在英语中表现优异,而且在其他语言中也表现出色。在MMLU基准测试中,这是一个涵盖57个学科的英语多选题套件,GPT-4不仅在英语中大大超越现有模型,而且在其他语言中也表现出色。在翻译后的MMLU版本中,GPT-4在考虑的26种语言中有24种语言的表现超过了英语的最新水平。

  4. 项目挑战
    本报告还讨论了项目的一个关键挑战,即开发在广泛范围内可预测行为的深度学习基础设施和优化方法。这使我们能够基于训练计算量不超过GPT-4的1/1,000的模型,准确预测GPT-4的预期性能。

  5. 局限性
    尽管GPT-4具有能力,但它与早期的GPT模型有类似的局限性:它不是完全可靠的(例如,可能会产生“幻觉”),具有有限的上下文窗口,并且无法从经验中学习。在使用GPT-4的输出时,特别是在需要可靠性的上下文中,应特别小心。

  6. 安全挑战
    GPT-4的能力和局限性带来了显著和新颖的安全挑战,我们认为仔细研究这些挑战是一个重要的研究领域,考虑到潜在的社会影响。本报告包括一个广泛的系统卡片(附录之后),描述了我们预见的一些风险,如偏见、虚假信息、过度依赖、隐私、网络安全、扩散等。它还描述了我们为减轻GPT-4部署可能带来的潜在危害所做的干预措施,包括与领域专家进行对抗性测试和模型辅助的安全管道。

(2)分析

  1. 多模态能力:GPT-4能够处理图像和文本输入,这表明它具有多模态处理能力,能够理解和生成多种类型的数据。

  2. 性能表现:GPT-4在专业和学术测试中表现出色,例如在模拟律师考试中取得了优异成绩。这显示了其在特定领域的强大能力。

  3. 基于Transformer的模型:GPT-4是基于Transformer架构的,这是一种广泛应用于自然语言处理的深度学习模型,以其在处理序列数据方面的高效性而闻名。

  4. 训练后的对齐:通过训练后的对齐过程,GPT-4在事实性和期望行为方面的表现得到了提升。这表明开发者在模型训练后进行了额外的调整,以确保模型输出更符合预期。

  5. 可预测的基础设施和优化方法:项目开发了可预测行为的基础设施和优化方法,这有助于在不同规模上保持模型性能的一致性。

  6. 性能预测:通过在小规模模型上进行训练,开发者能够准确预测GPT-4的性能。这不仅节省了计算资源,还提高了开发效率。

  7. 安全挑战:GPT-4的能力和局限性带来了显著和新颖的安全挑战,需要仔细研究和干预,以减轻潜在的社会影响。

总的来说,这段引言强调了GPT-4在多模态处理、专业测试表现、模型架构、训练后对齐、基础设施和性能预测等方面的进展和优势,同时也指出了其局限性和安全挑战。

8、全部标题

9、参考文献

三、重点阅读(second)

四、深入理解(third)

五、技术复现(forth)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/38540.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java使用Apache POI 操作word文档

项目背景: 当我们对一些word文档(该文档包含很多的标题比如 1.1 ,1.2 , 1.2.1.1, 1.2.2.3)当我们删除其中一项或者几项时,需要手动的对后续的进行补充。该功能主要是对标题进行自动的补充。 具…

OpenHarmony 开源鸿蒙北向开发——linux使用make交叉编译第三方库

这几天搞鸿蒙,需要编译一些第三方库到鸿蒙系统使用。 头疼死了,搞了一个多星期总算搞定了。 开贴记坑。 一、SDK下载 1.下载 在linux下使用命令 wget https://cidownload.openharmony.cn/version/Master_Version/OpenHarmony_5.1.0.54/20250313_02…

SVN简明教程——下载安装使用

SVN教程目录 一、开发中的实际问题二、简介2.1 版本控制2.2 Subversion2.3 Subversion的优良特性2.4 工作原理2.5 SVN基本操作 三、Subversion的安装与配置1. 服务器端程序版本2. 下载源码包3. 下载二进制安装包4. 安装5. 配置版本库① 为什么要配置版本库?② 创建目…

OpenCV旋转估计(1)用于估计图像间仿射变换关系的类cv::detail::AffineBasedEstimator

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 基于仿射变换的估计器。 这种估计器使用匹配器估算的成对变换来为每个相机估算最终的变换。 cv::detail::AffineBasedEstimator 是 OpenCV 库中…

大数据学习栈记——HBase安装

本文介绍大数据技术中流行的非关系型数据库HBase的安装,操作系统:Ubuntu24.04 安装Zookeeper 安装HBase前需要先安装Zookeeper,HBase使用Zookeeper作为其分布式协同服务,存储了HBase集群的元数据信息,并提供了分布式…

SpringBoot+VUE(Ant Design Vue)实现图片下载预览功能

目录 背景 1.后端实现下载接口 2.前端请求实现 第一步:导入api 第二步:请求接口 3.前端展示实现 4.实现效果展示 5.总结 背景 这段时间通过SpringBootVUE(Ant Design Vue)框架做了一个项目,但是在图片下载,展示的时候在网…

Java 推送钉钉应用消息

前言: 本文的目的是通过手机号获取钉钉成员的userid,实现钉钉应用的消息推送。 一、创建钉钉应用 登录钉钉开放平台 二、应用相关凭证 需要获取 Client ID (原 AppKey 和 SuiteKey) Client Secret (原 AppSecret 和 SuiteSecret) App ID 原企业内部…

SpringCloud介绍

什么是SpringCloud? SpringCloud 是分布式微服务架构下的一站式解决方案,是各个微服务架构落地技术的集合体,俗称微服务全家桶。 官方介绍: SpringCloud是基于SpringBoot提供了一套微服务解决方案,包括服务注册与发现…

YOLOv11 目标检测

本文章不再赘述anaconda的下载以及虚拟环境的配置,博主使用的python版本为3.8 1.获取YOLOv11的源工程文件 链接:GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀 直接下载解压 2.需要自己准备的文件 文件结构如下:红…

【Linux】——环境变量与进程地址空间

文章目录 环境变量环境变量的概念常见的环境变量PATH相关指令 main的三个参数前两个参数第三个参数 程序地址空间进程地址空间 环境变量 环境变量的概念 环境变量一般是指在操作系统中用来指定操作系统运行环境的一些参数,将来会以shell的形式传递给所有进程&…

Kafka--常见问题

1.为什么要使用 Kafka,起到什么作用 Kafka是一个高吞吐量、分布式、基于发布订阅的消息系统,它主要用于处理实时数据流 Kafka 设计上支持高吞吐量的消息传输,每秒可以处理数百万条消息。它能够在处理大量并发请求时,保持低延迟和…

Flutter:页面滚动,导航栏背景颜色过渡动画

记录:导航默认透明,页面发生滚动后,导航背景色由0-1,过渡到白色背景。 view import package:ducafe_ui_core/ducafe_ui_core.dart; import package:flutter/material.dart; import package:get/get.dart; import package:redo…

探秘格式化:数据危机与恢复之道

引言 在数字化飞速发展的当下,数据已然成为我们生活中不可或缺的一部分。无论是珍贵的家庭照片、重要的工作文档,还是企业关键的业务数据,都承载着我们的回忆、努力和希望。然而,格式化这一操作却如同隐藏在数字世界中的“幽灵”…

人工智能 - 通用 AI Agent 之 LangManus、Manus、OpenManus 和 OWL 技术选型

一、核心项目概览 1. Manus(闭源通用 AI Agent) 定位 :全球首个全流程自动化通用 AI Agent,GAIA 基准测试 SOTA 水平。核心能力 : 全流程自动化 :从任务规划(如撰写报告)到执行(代码生成、表格制作)的端到端处理。智能纠错机制 :基于沙箱环境的实时错误反思与调整…

封装一个分割线组件

最终样式 Vue2代码 <template><div class"sep-line"><div class"sep-label"><span class"sep-box-text"><slot>{{ title }}</slot> <!-- 默认插槽内容&#xff0c;如果没有传递内容则使用title -->&…

走进Java:String字符串的基本使用

❀❀❀ 大佬求个关注吧~祝您开心每一天 ❀❀❀ 目录 一、什么是String 二、如何定义一个String 1. 用双引号定义 2. 通过构造函数定义 三、String中的一些常用方法 1 字符串比较 1.1 字符串使用 1.2 字符串使用equals() 1.3 使用 equalsIgnoreCase() 1.4 cpmpareTo…

第2.2节 Android Jacoco插件覆盖率采集

JaCoCo&#xff08;Java Code Coverage&#xff09;是一款开源的代码覆盖率分析工具&#xff0c;适用于Java和Android项目。它通过插桩技术统计测试过程中代码的执行情况&#xff0c;生成可视化报告&#xff0c;帮助开发者评估测试用例的有效性。在github上开源的项目&#xff…

OpenGL ES ->乒乓缓冲,计算只用两个帧缓冲对象(Frame Buffer Object)+叠加多个滤镜作用后的Bitmap

乒乓缓冲核心思想 不使用乒乓缓冲&#xff0c;如果要每个滤镜作用下的绘制内容&#xff0c;也就是这个滤镜作用下的帧缓冲&#xff0c;需要创建一个Frame Buffer Object加上对应的Frame Buffer Object Texture使用乒乓缓冲&#xff0c;只用两个Frame Buffer Object加上对应的F…

Unity导出WebGL,无法加载,data文件无法找到 404(NotFound)

问题&#xff1a;data文件无法找到404Not found 示例是使用IIS托管启动 F12可以看到not found 的报错 解决办法&#xff1a; iis无法识别data文件&#xff0c;在MIME类型中增加data 类型&#xff1a;application/octet-stream 添加之后&#xff0c;会在根目录下生产一个…

C++与OO思想的联系

一、C与OO思想的联系 C&#xff1a;OO思想&#xff08;面向对象--属性和行为&#xff09; 任何事务都可以被看做一个个对象&#xff0c;一个再复杂的模型结构都是由千千万万个对象组成。 OO思想两个要素&#xff1a;属性和行为(方法)。 OO思想的特点&#xff1a; 封装&#x…